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Abstract

Many engineering or mathematical problems require to factorize structured matrices (Toe-
piiz, Hankel, Vandermonde, products of such matrices and their inverses, Schur complements.
etc) cither in explicit or in disguised form. Consequenty there exist various analytic tools
regarding structured matrices as well as several fast factorization aigorithms. In this thesis, we
show that many of these results and several significant generalizations can be obtained in a
very constructive way. The generic form is to use elementary circular and hyperbolic transfor-
mations to triangularize a certain array of numbers derived from the displacement representa-
tion of the given suuctured matrix; the desired results can then be read off from the resulting
array. These “fast array algorithms” require O (mn) operations for LU and QR factorizations of
m x a structured matrices, and O (mn) or even O (nlog’n) operations for solving matrix equa-
tions. Also the array form suggests various altemative algorithms, depending upon the order in
which the transformations are applied; these variations can have different numerical properties
and lead to different implementations.

Our algorithm is based on a generalized definition of dispiacement for block-Toepliz
(Hankel) and Toeplitz (Hankel)-block matrices slightly extending the previous definitions of
Kailath, Kung and Morf (1979) and Lev-Ari and Kailath (1984). An important property of
displacement structure is that it is preserved under Schur complementations, It will tum out
that Toepliz(Hankel)-derived (near-Toeplitz, Toeplitz-like, etc) matrices are perhaps best
regarded as particular Schur complements obtained from suitably defined block matrices. The
displacement structure is used ‘0 obtain a generalized Schur algorithm for the fast riangular
and orthogonal factorizations of all such matrices, and weil structured fast solutions of the

corresponding exact and overdetermined systems of linear equations.
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Abstract

Many engineering or mathematical problems require to factorize structured matrices (Toe-
plitz, Hankel, Vandermonde, products of such matrices and their inverses, Schur complements,
etc) either in explicit or in disguised form. Consequently there exist various analytic tools
regarding structured matrices as well as several fast factorization algorithms. In this thesis, we
show that many of these results and several significant generalizations can be obtained in a
very constructive way. The generic form is to use elementary circular and hyperbolic transfor-
mations to triangularize a certain array of numbers derived from the displacement representa-
tion of the given structured matrix; the desired results can then be read off from the resulting
array. These "fast array algorithms” require O (mn) operations for LU and QR factorizations of
m X n structured matrices, and O (mn) or even O (nlog?n) operations for solving matrix equa-
tions. Also the array form suggests various alternative algorithms, depending upon the order in
which the transformations are applied; these variations can have different numerical properties

and lead to different implementations.

Our algorithm is based on a generalized definition of displacement for block-Toepliz
(Hankel) and Toeplitz (Hankel)-block matrices slightly extending the previous definitions of
Kailath, Kung and Morf (1979) and Lev-Ari and Kailath (1984). An important property of
displacement structure is that it is preserved under Schur complementations. It will tum out

that Toeplitz-(Hankel)-derived (near-Toeplitz, Toeplitz-like, etc) matrices are perhaps best
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regarded as particular Schur complements obtained from suitably defined block matrices. The
displacement structure is used to obtain a generalized Schur algorithm for the fast triangular
and orthogonal factorizations of all such matrices, and well structured fast solutions of the

corresponding exact and overdetermined systems of linear equations.
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Chapter 1.

Introduction.

Fast algorithms for factorizing structured matrices that include Toeplitz, Hankel and Van-
dermonde matrices have a long history. The earliest known fast algorithm is probably the
Euclidean algorithm, which has recently been recognized as providing a fast factorization of
Hankel matrices {14]. Factorizations of Hankel matrices also underlie the criteria and the fast
algorithms (due to Hermite (1856), Hurwitz (1895) and Routh (1875)) for checking the root
distributions of a polynomial with respect {0 imaginary axis (See [45] for recent generaliza-
tions). More recently, in the context of decoding BCH codes Berlekamp and Massey (5], [48]
gave a fast algorithm that factorizes the inverse of a Hankel matrix (See also [9], [14], [41],

[54D).

Fast algorithms for Toeplitz matrices have an even richer history [33-34). Caratheodory
(1911) and Toeplitz (1911) showed that the positive-realness of certain functions is equivalent
to the positive-definiteness of certain Toeplitz matrices [1]. Later, Schur (1917) gave a fast
algorithm that checks the positive-realness, and in fact, also factorizes close-to-Toeplitz
matrices [33-34), [44], [59). The Schur algorithm has also appeared in different contexts not-
ably in seismic deconvolution problems as the so-called "layer-peeling” method [11), [35]),
[57), in orthogonal filter synthesis [17], [{56] and in checking the root location of a polynomial

with respect to the unit circle (33-34). Bareiss [4] also rediscovered the Schur algorithm as a
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fast method of solving Toeplitz systems of equations.

There is another class of fast algorithms that factorize the inverse of Toeplitz matrices.
They include the recursions of the Szego orthogonal polynomials {62] and the Levinson algo-
rithm [46]. As closely related results, there are the Gohberg-Semencul formulas [21-23] and

the Trench recursion [63].

In 1972, Kailath [29] [31] developed fast algorithms for Kalman filters associated with
continuous-time constant parameter state-space models. These algorithms replaced the non-
linear Riccati differential equations of the Kalman filter with another set of nonlinear equations
that he dubbed the Chandrasekhar equations because equations of somewhat the same form had
been developed by Chandrasekhar and Ambarzumian for solving certain Wiener-Hopf integral
equations encountered in radiative transfer theory [12), [60]. The discrete-time versions of
these results were developed by Kailath, Morf and Sidhu (see [37], {38]). Various extensions
were made jointly by them along with Ljung and Friedlander, and nice interpretations were
found in terms of scattering theory. In the course of this work, it became clear that there were
close relations between these state-space results and the Levinson and Schur algorithms for
solving Toeplitz equations and factoring Toeplitz matrices (see the review paper [30], [32],
which contains many references). As noted therein, Kailath er. al. found that the key concept
enabling the different fast algorithms was what they called DISPLACEMENT STRUCTURE.
This is in many ways a natural generalization of Toeplitz structure; for example, the inverse of
a Toeplitz matrix is not in general Toeplitz, but all matrices and their inverses have the same
displacement rank. Structured matrices (Toeplitz, Hankel, Vandermonde, products of such
matrices and their inverses, Schur complements with respect to various entries, etc) all have
low displacement rank. The complexity of numerical computations with structured matrices
depends upon their displacement rank. The concept of displacement rank has been developed,

extended and applied in many ways by Kailath and his students and colleagues (Morf, Sidhu,
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Dickinson, Ljung, Kung, Friedlander, Verghese, Vieira, Levy, Lee, Lev-Ari, Delosme, Porat,
Cioffi, Bruckstein, Citron, Bistritz, Rao, Dewilde, Dym, DePrettere, Pal) - see the review paper
[34].

As the reader may have anticipated from the above discussion, the various results men-
tioned therein have been developed and presented using a variety of algebraic and analytic
tools. The main contribution of this thesis is to show that the above results, and several
significant generalizations, can be obtained in a very constructive (or algorithmic) way. (At
least, we have so far shown this for many of the earlier results; with more work, one might

anticipate being able to replace "many" by "all". - see the remarks in the last chapter).

The generic form is to use elementary circular and hyperbolic transformations to triangu-
larize a certain array of numbers derived from the displacement representation of the given
structured matrix; the desired results can then be read off from the resulting array. This new
array form suggests various alternative algorithms, depending upon the order in which the
transformations are applied; these variations can have different numerical properties and lead to

different implementations.

The basic ideas can be seen from the simple examples in the next section. However, it
may be noted here that such array form algorithms were introduced into least-squares problems
independently by Golub [24] and by Dyer and McReynolds (18], and further developed by
Bierman [6], among others. Generalizations for Riccati and Chandrasekhar recursions were

introduced under the name square-root algorithms by Morf and Kailath [50].

1. Prototype Examples.

In this Chapter, we shall explain the basic idea of the fast algorithms for structured
matrices. To provide some motivation, we shall also briefly introduce several problems that

involve structured matrices.
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Simultaneous Factorization of T and T~
Let T be a Toeplitz matrix

Co €1 - Cpqg

€1 €0 " Cp2
r=) . . . . [ ¢€o=L

Cr-1 Ca-2 © Co

Then it is easy to check that T can be expressed in the so-called displacement form [33-36],

T = L(xpLT(x;) = L(xpLT (xp), ¢))
where L (x) denotes the lower-triangular Toeplitz matrix with the first column x, and

xp=[l,cp,c ¢, c,,_llr, x;=[0, ¢y, €00+, c,,-,]T.
Now we form a pre-array

[ L(x)) L(x»}
A= I .

! @
and post-multiply A with any J-orthogonal matrix ©, viz., one that satisfies
. 1, 0
e/e =J, J=|, |
that will yield a triangular post-array
L, O .
A0=| ., L= A, say. 3)
Then it tumns out that
T=LL], T'=0UT=L,L] @
The proof is very simple. We just compare entries in the identity
AJAT = AQJOTAT = AJAT.
From (2) and (3), we have
[
AT LOLT(xy) = LxLT(x) L(x)) = L(x)
| LTe-LTwy o | 3)
.
L ap |ET LUT
AJA" = oLl vt Ly | 5b)




Now equating corresponding entries gives

LiLT = Lx)LT(x)) = L(x)LT (x))
ULT =LT(x)) - LT(x) =1
vuT - L,LY =0.

Therefore,

T = LlLT.
TU=L{TLy =U0UT =L,LL
Remark. Determining the AR parameters of a random process requires solving a special Toe-

plitz systems of equations called the Yule-Walker equation (or Nommal equation). The Yule-
Walker equation has a special right-side vector, viz., the last column of the Toeplitz matrix
shifted by one position. One can easily prove that the solution of Yule-Walker equation is the
nommalized last column of the upper triangular matrix U, where T~! = UU7. Similarly,
decoding BCH codes requires solving the Hankel system of equations whose right-side vector
is the last column of the Hankel matrix shifted by one position. The factorization of the inverse

of the Hankel matrix also gives the solution for such equations.

We still need to show how to find such a matrix ©. This can be done in many ways.

One is as a sequence of hyperbolic rotations,

1

1

____(1 o x \ , lkl<l,

H; k)=

1

P

where & is called the reflection coefficient or Schur parameter. Let us consider a row vector
x’ € R™, and H; j(k), where k = x;/x;, the ratio of the jth and ith elements. With this

choice, we will have

% ox o W@ =050 JmxT,  x = Vxix,
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where only the ith and jth elements of x are altered. Clearly, we can introduce a zero at any
position in the pre-array by post-multiplying the pre-array with an appropriate hyperbolic rota-
tion.
We shall illustrate the annihilation procedure with a 3 x 3 Toeplitz matrix,
1 ¢ 1 €2

T= Cy 1 (S

Cy € 1
We first form a pre-array A, and post-multiply A by H; 4(c) to annihilate an element ¢ in the

(1, 2) block, resulting in A;:

[ 1 ] [ 1
c; 1 Cy ¢y dy
¢y ¢y licy cy dy 1)dsy ¢y
A= ] 1 » AHy4(cy) = 1 d, |ds = A,
1 1 ds |dg 1
I 1 1] i 1 1]

Now, we annihilate the remaining ¢ in the (1, 2) block with H;s(c,;) and the last element d;

in the (1, 2) block with H; 4(d+/d,) resulting in the post-array A:

[ 1 ' 1
¢ d, ¢ 4,
¢ dy dy(d; dy |€24z2 @ .
AHyscp) = T d, ds 5A A2”3,4(‘&T)= T dg ¢;|eq =A
ds d4 d4 ds ds €3 1€, ds
i dg d, IJ i e ley dy lJ

Note that the Toeplitz structure allows the whole subdiagonal in the (1, 2) block to be nulled-
out with hyperbolic rotations having the same reflection coefficient ;. This suggests that we

can keep only two columns and operate on them as shown below:
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(1 0] (0 0] [0 0]
€1 Cy 1 ¢ dy 0
X=|7T7 X¥= 57 X*¥H ) z(cy) = dy ds =X (62)
0 0 10 ds ds
[0 0] |0 0 [0 o)
[0 0 (0 0]
0 0 00
dl d3 d €y 0
3
Xl(")5 0 ds| Xl(:)Hll(;T)= e €4 = X2 (6b)
d4 d4 €3 €3
-ds 0- _e4 e2J

The entries in X, X, and X, completely determine the matrices of L,, L, and U. This con-
struct can be regarded as a combined form of Schur algorithm [33-34], [59] (see also (4], [42-
44), [55)) and Levinson algorithm (46]. We remark also on the simplicity of the algorithm

description and justification.

By inspecting (6), the overall operation count for finding L, L, and U for an n X n

Toeplitz matrix T can be seen to be

n
2% 4i =4n% + O(n).

i=l
This count can be reduced by half if we use fast rotations (see [13] for details).
OR factorization of T [13].

Similar ideas can be used for finding the fast QR factorization of a Toeplitz matrix T.
First, it is not hard to check that TTT and T have the displacement forms,
TTT = LwLT (W) + L(wp)LT (W) — L(wy)LT (w3) = L(W)LT (W),

T = L(v;)LT (W) + L(vpLT (W) = L(v3)LT (w3) = L(v)LT (wy),
where the vectors w; and v; are defined as

w = TTtl/“tl”. wy=1t; W= Z.ZIWI, we=2,1,,

vi=-vy=t/litll, vy=¢, v(=0,
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where Z, denotes the n X n shift matrix (i.e., the matrix with 1°s on the first sub-diagonal and
0’s elsewhere), and

ty=[to £y, - -, tm—l]Tv t=1[0,2, ", tl—u]Tv h=[p-1o s tm-n]‘r'

Now we form a pre-array

L(w;) L(wp) L(wy) L(wy)
T=lLw) Levp Lv) Lvy |
and post-multiply " with any J-orthogonal matrix, where

~
1]

P

that will annihilate the (1, 2), (1, 3) and (1, 4) blocks of T, and triangularize the (1, 1) block of
I:

RT o oo
re = Q * * » =T

Again by equating each entry of I/T7 and TJT7, we shall have

TTT =RTR, T =QR
Note that the matrix Q is orthogonal because
QTQ =RTTTTR' =R TRTRR =1.
In this application, the J-orthogonal matrix 8 can be constructed as a sequence of hyper-

bolic rotations and circular (or Givens rotations),

1

Giu®) = T w ko1

Simplicity of the above algorithm and its justification may be compared with the previously




known fast QR factorization algorithms.

2. Some Examples of Structured Matrices.

How about the factorization of non-Toeplitz matrices and their inverses? In many signal
processing problems, one needs to solve structured matrix equations or to factorize structured
matrices either implicitly or explicitly [33-34], [4244]. Some examples [33-34] involving
Toeplitz or Toeplitz-like matrices are the Schur-Cohn test (for checking if a polynomial has a
root outside the unit disk), orthogonal filter synthesis, finding AR filter [39] and certain inverse
scattering problems (11], (35]. On the other hand, certain decoding algorithms for BCH codes
[14]. [41] require the factorization of Hankel matrices, and finding interpolating polynomials
needed to solve Vandermonde matrix equations. In this section we shall present some well-

known examples bringing in structured matrices.

Example 1 Two Dimensional Filtering with finite Samples.

Let {y; ;} and {n;;} be uncorrelated Gaussian random images, and suppose we observe
yigh

Yij =X tNi.

Let the image planes be stationary, i.e.,

Ely;jyuy) = Geiy-jr  EMM; jMay) = faeiy-j-
It is desired to find the estimator based on the measurements in the square region centered at

(U))

£;=Elxjlyy :i-m Sk Si+m, j-m <1< j+m]
i+m  jem
= X X agyy @

kmi~m [wj-m

The coefficients in (7) can be found from the orthogonality principle [32),

E[(%; - x;)il1=0
leading to the following block-Toeplitz, Toeplitz-block (or doubly Toeplitz) system of
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equations,
TO Tl sz a‘_m g-m
r, T, Tom— 2 _pi P
- = . * (8)
Tzﬂl T2m-1 To Ao Zn
where
[Te)ij = dy-j € REmHIXCmD),
3 =[Gimr " aum]T e R@m+X1

8 = Bhom " i) € RO, g&j=dj~Jfij
The algorithms to be described in Chapter 2 can be used to solve (8) with O (m°) operations.

Example 2 Numerical Solution of Integral Equations {19], [47], {52], [58].
In some signal processing applications, we need to solve certain integral equations, such
as the Wiener-Hopf equation,

Iy (t4A) = £r,, (¢—h(t)dt, >0, (92)

or the equation that arises in inverse filtering [27] for image restoration,
b d

gx.y) = [ [ hx-a, y-P)f (@ Pyd adP. (9b)
The equation (9b) is usually solved numerically after discretization using some quadrature for-
mula, which will yield a matrix equation. It is known that solving an integral equation of the
form (9) is inhcrently an ill-posed (ill-conditioned) problem. For simplicity let us consider the
single variable case,

b

g() = [ K(x, y)f 0)dy. (10)
Phillips [52] gives a good discussion of the difficulty involved. Following Phillips, let
fm(y) msin(my). Then for any integrable kemel K (x, y), it is known that

b

&m = [ Kx Ym0y 5 0 a8 m e

Therefore, an infinitesimal perturbation g,, in g can cause a finite perturbation f,, in f. Also,

one would expect that g,, — 0 (a8 m — oo) faster for flat smooth kemels than for sharply




peaked kemels. Let

Kf=g

-11 -

(11

be the matrix equation obtained from (10) by some discretization procedure. If we refine the

discretization, then the ill-conditioned kernel would appear as an ill-conditioned matrix. On the

other hand, if we use a large mesh width, the transformation from the integral equation to the

matrix equation can be ill-conditioned, and therefore we may be solving a (possibly well-

conditioned) different problem.

One way to try to overcome this difficulty is via regularization. The ill-conditioning

manifests itself as an oscillatory solution f(x). Therefore, it is reasonable to constrain the

solution to have some smoothness, e.g., to require that

[of @z <.

or after discretization

L™, < vy,

For example when n =1 and 2,

FOM)Ax = f(x + Ax) - f(x),

Therefore,

L=

FPAx = f(x + Ax) = 2f (x) + f (x - Ax).

L®

1-21

Now, we solve the following constrained minimization problem rather than (11),

m’inlle— gll; subjectto t IIL®™fH, =1y.

To solve (13), we form the Lagrange function

t The constraint in (12) is usually active.

-

(12)

(13)
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F(t,n) =lIKf—gl?+n(ILfIZ <),
and from —a%ffm- =0, we get

KK +nLTLf=KTg. (142)
This can be recognized as seeking the least squares solution to the linear system
K g
nL f= ol (14b)

The Lagrange multiplier 1) is usually chosen by trial and error. If L is the identity matrix, then
this method reduces to the so-called "damped least squares method" (also see [25, pp. 145,

P6.1-9] for computing approximate pseudo inverses with this technique).

K

n L] is close-to-

For the convolutional kemel, the matrix K is Toeplitz, and the matrix |:

Toeplitz. The algorithms to be discussed in Chapter 2 can be used to solve (14) in o (nd

operations.

Example 3 Maximum Likelihood Estimation of ARMA Parameters [3], [40, pp. 125-127].

Let {y(z)} and {e(t)} satisfy the difference equation

y@)+ay(-1)+--+a,y@t-p)=e@)+cire(t-1) +-+-+c¢,e(t—q) (15)
where e(t) is a zero-mean white Gaussian process with variance o’

A@)=zP +a” '+ - +a,20 for lzl<1,
C(z)az"+c,z""+--+cq=t0 for Izl <1,

and {q;}, (c;} are unknown deterministic constants. Given measurements

yv =W, -y ), y(=1), - -, y@)IT
it is desired to find an estimator for o and

0=1[0,0, -,6,]"T=[ay, -, @puCpo s c,]r.

Note that

P(yn) = POy(N)lyn-pP (Fn-1)-
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Therefore,
N

P(yy) = [‘1;1]1’0'(!)|yx-1)]1’()’(0). 1)) (16)

Because {e(t)} is Gaussian, P (y (¢)ly,_,) is also Gaussian, and
__1 [y (¢)»-y ()1
P ly,_)= e . an
(y(t) Yy, 1) W Xp[ 2p2 }

where

y@) = Ely®)ly,) (18)

2 = E[y (I (DO -F ()] = Ele(®e(D)]) = &
First, note that the probability density P(y(0), - -,y()) is a complicated function of

{y(0), - -, y(-=p)}, 0 and o, and therefore, it is difficult to find the maximum likelihood esti-
mate of O using P (yy) in (16). Instead, we maximize the conditional probability density func-

tion

N
PnIG@©. - -, yepY] = TPO®lyi-). (19)
To use (19) for maximum likelihood estimation, we need to express y(¢) in (17) in terms of ©.
If we assume that we know {e(r)}, then
y(@) = Ely(®)ly,]

=ay@-1)+--+ay(t-p)+ce@-1)+--+cet-q).
However, we do not know {e(z)}, so we approximate e(¢) with €(t) that is computed recur-

sively by

&)=y +ay-1)+- - +ayt-p)-cE@t-1)—--—ce(t—9q). (20)
With this approximation note that

y@) - y(@) =€)
From (19), the (conditional) likelihood function L is given by

L3 N
logl. = ; <,2'5‘18(:) + Nlogo + Z-log2r.

Note that maximization of L with respect to the parameters ¢ and O can be done separately.
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Maximization of L with respect to 9 is equivalent to minimization of

1 ¥ 2
VE) = o TEw.
k=1

With the following notations,
=( 3L ... Of ;1 _ pan 2r0) = [ _9F axn
Df(0) = 2, " %, I e R™, D*f(0) [ae,-aej e R™%,

notice that

N
DV(®) = Te(t)Det)=BTb,

=]

N N
D*V(8) = TDe(t)DTet) + Ye(r)D%(t) = BB,
=1

t=]

where
[ (D))’ (1)
[De@))" £(2)
B= : . b= .
| e | ) |
Using (20), one can easily verify that
R )
—S—laaec' = e(t—l.) - C aegc-l) =€ a%'c_z) - =- Cq —Silaeatc. .
If we define the matrices ¥ and E .
[ YO yeD - ya-p) ] [ &0 e~ - e(l—q) ]
y(1) yO) - y(@2-p) &(1) g0 - e2-q)
Y= . . . . E =~ . . . .
Lym=1) y(m-2) - y(m—p) | | em=1) em-2) - etm—q)

then the matrix B in (21) has the form

1)
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B=CYYE), C

74

Now the parameter @ that minimizes V() can be obtained iteratively by using Newton’s
method.
(Conditional) Maximum Likelihood Estimate
Set initial estimate 6 = 0;
repeat
Compute €(¢) with (20);
Solve Bs = b;
0:=0+s
until convergence.

The matrices C~'Y or C~!E are not Toeplitz, but they are close-to-Toeplitz.

Example 4 Instrumental Variable Method [20].

Consider an ARMA model as in (15), and let 6, = [a, - - . @, }T. The parameter 8, can

be obtained by solving

Tir,0=T17y, 22)
where
[ y@)  y@+) - - y(gN) ] [ Y@ yEb - - y(-p) ]
y@@-1) y(@) - - y(@+N+1) y() y© - - y@-p)
1';'= . . .. . , Ty = . . .. .
| y(@-p+) - - : ] lyWN=-1) - - - y(N-p) ]

y=lyMy®@, . yW) 1
Again the matrix T1T, is close-to-Toeplitz, and the fast algorithms in this thesis can be used to

solve (22).
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Example 5 The Euclidean algorithm and Hankel Matrix Factorization. t

The Euclidean algorithm that tests if two polynomials are relatively prime or not in fact

factorizes Hankel matrices. To see this, let us consider the 3 x 3 Hankel matrix

532
H=1321

214
We define the polynomial

px)=5x*+3x7 + % +x +4,
whose coefficients are the 1st column and the 1st row of H. Also let

qx)=x°.
We repeatedly divide as follows.

1,
5
Sxt+3x3+2x 2ex+4 (1x3 2a)
.3 4.2.3. 1.2 4
+=x "+ =x 0+ —x =
X 51 51 sx Sx
3423 134
5% s¥ s 5t

25
3

é—xz-:;-x Sxt+ 3x3+ % + x4

23 4.2 3
5* 5%

4,10 3.5 2. 20
+— +_ —
5x 3 X 3x + 3 X

13,1 4 17
SR 0 U 0 Y VP
3F 3% 3

+ The division algorithm shown here is slightly different from the classical Euclidean algorithm. However,
classical Euclidesn algorithm can be also used for this purpose.
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2y
5
Va1 2 17 41 3423 132 4 22b
3x4-3x 3x+4 51 $¥ ~ 5% 51 (22b)
3. 4,33 51 2 36
ICAPNE LA TR
T Sl T
—x3 + 10x2%- 8x
1
3
~x3+10x%-8x —-:l;x3+ %xz-lslxﬂ
_1,3,102 8
3* +3E- 3%
—3x%- 3x+4
1,
3
-3x2-3x+4| —x3+10x2-8x (22¢)
~x3- x2+i’-x
llxz—i—sx

Now consider the truncated divisor polynomials in (22),

pox) = 5x*43r3+2x%, py(x) = -—%x’+%—xz, pax) = -3x%,

and the highest degree terms of the dividend polynomials in (22),

qo(x) = %

y qix) = -%x‘. gi(x)m -x3,
If we multiply p;(x) by the coefficients of g;(x), then it turns out the resulting polynomials

form the columns of Cholesky factors of #. Namely,

5 1/5 s 3 2
H=}3 15 5 5 -1/5 |.
2 -1/53 173 3

The computational effort is O (n%. Further discussion of the problem will be given in Chapter
4
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Example 6 Polynomial Interpolation [15, pp. 38-46).
Given n distinct points x,, x4, -, - , X,, wWe can find a polynomial

PE)=apyx" 1+ a, x" 2+ - +ayx +ay 23)

of degree at most n~1 by solving

l xl * x?_l ao yl
1 x - x| a Y2

= y  Yisp(x).
Ll X, - x,',"lJ Gn-y Yn

Instead of finding the coefficients of the polynomial in (23), we could as well find the
coefficients of the so-called Newton form,
p(x)=co+ci(x=x0) + ca(x—x)x—X) + - - + cp(x=~x¢) - - (x=X,_1).
One can check that the coefficient ¢, depends only on the values of f(x) at the points
X X1, " ¢, X it is called the kth divided difference of f(x) at the points xq, x4, - - , X; and is

denoted by f [xg, * -, xx]. Also one can check that

f[xO"_‘xk]=f[xlv"lxk]—f[x()v"'xk-l] (24)
Xx — X0

After finding the Newton form, we can recursively compute the coefficients g; in (23), if we
wish, by using the identity
Co + ¢ 1(x=x0@ + c2(x=x0)(x-x{) + C3(X—xXNXx—X N X~X2)

=cg + (€) + (c3 + c3(x—xD)x—X))(x—*X0). 25)
The computations in (24) and (25) need O (n?) operations, and in fact factorize the Vander-

monde system of equations [8). The factorization algorithms (for Vandermonde matrices) in

Chapter 4 are closely related to this method.

3. Outline of the Thesis.

The idea in Sec 1 is extended in Chapter 2 to find triangular factorizations and QR fac-

torizations of block-Toeplitz and Toeplitz-block matrices. In Chapter 3, we slightly change the
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pre-array in Sec 1 to constructively obtain certain well-known Toeplitz inverse expressions

called the Gohberg-Semencul formulas. We also generalize the Gohberg-Semencul formulas

[22-23] to a large class of matrices. Some related results are in [21], [26], [39], [42-43], [63].

In Chapter 4, we show how to factorize close-to-Hankel matrices such as Hankel, block-

Hankel, Hankel-block and Vandermonde matrices. Some previous results are [5], [9), [41],

[48], [53-54], [61]). In Chapter 5, we present a divide-and-conquer approaches for finding

solutions of block-Toeplitz and Toeplitz-block matrices; for related results, see [2], [10], [16],

[49], [51]). Some concluding remarks are offered in Chapter 6. Each chapter is self-contained,

and therefore, readers can essentially read them in any order.

(1.

[2].

(31

(4).

{51

(6].
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Chapter 2.

Generalized Displacement Structure for Block-Toeplitz,
Toeplitz-block, and Toeplitz-derived Matrices

Abstract

The concept of displacement structure has been used to solve several problems connected
with Toeplitz matrices and with matrices obtained in some way from Toeplitz matrices (e.g. by
combinations of multiplication, inversion and factorization). Matrices of the latter type will be
called Toeplitz-derived (or Toeplitz-like). In this chapter we shall introduce a generalized
definition of displacement for block-Toeplitz and Toeplitz-block matrices. It will tun out that
Toeplitz-derived matrices are perhaps best regarded as particular Schur complements obtained
from suitably defined block matrices. The displacement structure will be used to obtain a gen-
eralized Schur algorithm for the fast triangular and orthogonal factorizations of all such
matrices, and well structured fast solutions of the comresponding exact and overdetermined sys-

tems of linear equations.
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1. Introduction.
In multichannel signal processing, system identification and image processing applica-

tions, one encounters various forms of structured matrices. One interesting family consists of

matrices having a block-Toeplitz form

By B_ - B yy
B, By * Bya

A= . B;: rectangular matrices, (1a)
By-1 By - By

or a Toeplitz-block form

Ty Ty » Thy
Tyy Tap - Ton

A= ) . » T ;: rectangular Toeplitz matrices (1b)

Tyy Ty - Tyn

or often as Schur complements with respect to various entries in A or A, (see the examples in
Sec 4). Often we call the matrix A; an M x N block-Toeplitz array, and the matrix A, an
M x N Toeplitz-block array; the matrices obtained as Schur complements are often not Toe-

pliz at all, but have been called near-Toeplitz, or close-to-Toeplitz, or Toeplitz-like or

Toeplitz-derived matrices.

For such A, we shall show how to obtain fast triangular factorization A = LU, and fast

QR factorization, A = QR, which among other things will also give us fast nicely structured

methods for solving exactly-determined systems of equations,

Ax=b, AeR"™, A isstrongly nonsingular 2
and also over-determined systems of equations,

Ax=b, AeR™* m2n, A hasfull column rank. Q3)

Our results will be based on a generalization of the concept of displacement structure used in
earlier work (see e.g., [13-17]). Besides enabling us to solve several new problems, this gen-

eralized concept will also provide a new and simpler approach to many of the problems swudied
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in [13-17] and (4]. However, first we briefly review earlier approaches and results.

For a square block-Toeplitz matrix A, € R***, with square blocks B; € R™”, there exist
several fast triangular factorization algorithms such as the Bareiss algorithm [1], the multichan-
nel Levinson algorithm [18] and the Schur algorithm {13-14], {20}, all of which require matrix
(of the block size, r x r) operations. Our approach will treat block-Toeplitz matrices in essen-
tially the same way as scalar Toeplitz matrices, and in particular will use only elementary
scalar operations; the absence of matrix operations such as inversion will simplify the design of
dedicated hardware implementations. For a square Toeplitz-block matrix A, € R** with
T,j e R™, the previous approaches were first to transform A, into a block-Toeplitz matrix
by pre- and posi—multiplication with permutation matrices, and then apply an algorithm for
square block-Toeplitz matrix to get a row- and column- permuted triangular factorization of
Ajy; there is clearly a difficulty with this approach when m;#m;. Also the permuted matrix
might not be strongly nonsingular. Our approach will not have this problem because it directly
factorizes A, without permutations. Finally, for matrices obtained via Schur complementation,
the concept of displacement structure (see e.g. [4], [14-17]) has been used to obtain a number
of fast algorithms; in particular, several algorithms have recently appeared {2}, [4], {8], [21] for
the orthogonalization of scalar Toeplitz matrices; our new approach also provides a generalized

unification of these algorithms.

Several illustrations and applications of our approach will be given in Sec 4. Qur choice
here was made in part to relate to examples and problems that are studied, generally in

different-ways, in other chapters of this thesis.

Our generalized definition of displacement structure is presented in Sec 2. A correspond-
ingly generalized Schur algorithm for matrix factorization is derived in Sec 3. As just men-
tioned, Sec 4 contains various applications. Finally some computational aspects are elaborated

in Sec 5; in particular we may note the introduction of spinors, which include as special cases
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the circular (Givens) and hyperbolic rotations as well as the well-known elementary (or elimi-

nation) matrices.

2. Displacement of Matrices.
Let A € R™™ be a given matrix, and let F/ and F® be strictly lower triangular
matrices. The matrix
Vs oy = A — FLAFT @
will be called the displacement of A with respect to the displacemens operators {F/, F®}.
Assume that

rankV(F,j,-.)A = Q.
Any matrix pair {X, ¥} such that

VerpA =XYT, X=(xuX. . Xal Y=[yu92.., ]
will be called a generator of A (with respect to {F/, F®}). The number o will be called the
length of the generator (with respect to {F/, F®}). A generator of A with the minimal possi-
ble length will be called a minimal generator. The length of the minimal generator of A (i.e.,
rank(V s zs,A)) will be called the displacemens rank of A (with respect to {Ff, F®}), and

denoted as 0.(,,-/ ,F.)(A ).

If (X, Y} is a generator of A € R** with respect to {F/, F?}), then for any nonsingu-

lar matrix § € R™®, the matrix pair {XS, YS~T} is also a generator of A because
Vier poyr =XYT = XS57'YT, ©)
Let (X, Y) be a generator of a matrix with respect to strictly lower triangular displace-
ment operators (F/, F®}. We say that a generator is proper (with respect to the column j) if,
for a certain {, all the elements in the ith row of X and above, except for the element [X]; ;,
are zero, and all elements in the ith row of ¥ and above, except the element [Y]; ;, are zero;

for example,




r -l r -
0-0*0-0 0-0*0-0
X=|* * % *|, Y=|* * *
L*.**#.*J *.t**.*J

Often we shall denote a proper generator as {X,, ¥, }. If {X, Y} is not proper, then by choos-
ing appropriate S, we can obtain a proper generator {XS, ¥ST} under certain conditions on
the matrix A (see Sec 5).

Note that the displacement of a symmetric matrix A can be written as Vz/ s A = XIX T
where I is a diagonal matrix with 1 or -1 along the main diagonal; we shall say that A has a

symmetric generator, {X, XX}.

As an example, for a square Toeplitz matrix T = (;_;) € RV

to -1 * lpa tp O
41 N 10
12 -
Ve zT=| . O =XIXT, x=| i Z‘[o —1]'
4y bt fn-1

Choice of Displacement Operators.

Let (X, Y} be a generator of length o of A with respect to F/ and F®. If the matrix-
vector multiplications F/v and F®v takes f (n) operations, then our algorithm in Sec 3 will
need O (onf (n)) operations. Therefore, our objective is to choose the "simplest” or sparse (to
make f(n) small) strictly lower triangular matrices #/ and F? that also make « as small as
possible. For a scalar n x n Toeplitz matrix, a natural choice of displacement operator is the

simple n X n shift matrix, Z,, with 1’s along the first sub-diagonal, and 0’s elsewhere.

For an M x N block-Toeplitz array with r x s blocks, the following choice of displace-

ment operators gives the smallest a,

F/f =z}, Fb=2§,
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where Z% is a block shift marrix, ie., a k x k array with r X r identity matrices on the Ist

block subdiagonal and zeros elsewhere.

For block-Toeplitz or Toeplitz-block matrices, it is straight forward to obtain generators

from the displacements by inspection (see Appendix 4 for closed forms), as we shall illustrate

in several examples.

Example 2.1. For the following block Toeplitz matrix A, called the "Hurwitz marix”, we can
choose Ff = Z% and F® = Z to get a rank-2 displacement V(F’F')A .

- -
- -

a, a3 as ag - a, a3 as aq -
ag a, a4 ag - ag @9 a4 ag -
A=10 a; a3 as - |, V(F,f,)A=

00002&4' O

L ] ] ]
Note that V., A =XY T where

100--T alasas"T
X=lo10--|"Y=lasayaq-|" =

For an M x N Toeplitz-block array with m; x n; Toeplitz matrices, we shall use the dis-

placement operators,

M N
F/ = @2, ¢« R™", F®=g@Z, ¢ R"™,

iml im]

M AO
where @ denotes the concatenated direct sum, ie, A®B = [ 0 B ]
]

Example 2.2 For the following Toeplitz-block matrix A, which arises in ARMA system
identification problems (9], we can choose F/ = Z, and F® = Z,®Z5 to obtain a rank-3 dis-

placement,
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Fﬁo Bt Yo Y1 Y2 (ﬂo Bt Yo Y1 Y2

Bi Bo 1 Y Y- B N
Al B2 h Y| Verrd =g, Y2

_Ba B v % T | -ﬂs 7 ]

Example 2.3. Consider the matrix M,

I AO
M=|AT 0 1.
o 10

If A is an M x N block-Toeplitz array with r X s blocks, we could choose

Ff =F" = Zy, ®Z{, ®Zp; -

. T,
If A is a Toeplitz-block array, for example, A = [Tz]' where Ty € R™ and T, e

then we could choose
Ff =F* =2, ©Z,,0Z,02,.

Remark 2.1. One might check that the displacement operators for a block-Toeplitz matrix and

a Toeplitz-block matrix are related by

r
ZL =P'[i?lZ,‘]-P.
where P is the permutation matrix that transforms the block-Toeplitz matrix into the Toeplitz-

block matrix by pre and post-multiplication, vice versa.

3. Generalized Schur Algorithm and Partial Triangularization.

A fundamental method for triangular matrix factorization is the so-called Schur reduction
process, which computes Schur complements of leading submatrices iteratively. Lev-Ari and
Kailath {16-17] realized that the classical Schur algorithm amounts to Schur reduction, and
gave several important generalizations including one for Hankel matrices. In the rest of this

chapter, we shall further elaborate the ideas in [17].
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Fast Schur Reduction using Displacement Structure.

Our fast algorithms will be based on the following theorem.

Theorem 3.1 Let (X, YO} be a generator of a rectangular matrix AV € R™* with respect
to (F/,F®}. Also assume that (XM, YO} is proper with respect to a particular (pivoting)
column, which we shall index as "pvt". If we denote the columns of X" and Y by

XO=ix®, - x@ - xP, r P =0, 580 - v
then the masrix A® defined by

A® = AD _ x Oy
has null first column and row, and has a generator (X®, Y®), with respect 1o (F/, F*} of
the form

X(Z) = [xl(l)! Ty %y fop(\ln), ST xa]v Ya) = [yl(l)v ‘e Ty Fby;\l‘)r Sty y((zl)].
Proof

AD _ L A@FT = (4 _ x’s‘lﬂ)yﬁT] ~Ffla® _ X’S}‘)y;BT]pr
=AW — FfAOFT _ xDy AT 4 FxQyQTFT

= XOpOT _ Oy | p Oy QT
= XQy QT

The first column and row of A® are null because
ADey = [XDYDTie, =0, eTAD = eJ[XDYPT] =0,
where we have used the facts that F/ and F? are strictly lower triangular and (X®, Y®} is
proper. a
Before presenting the generalized Schur algorithm, we assume that we have a procedure
called MakeProper that can convert a given generator (X, Y} of A € R™ into a proper gen-
erator {XP, Y,} (whenever A has a proper generator); this can be done with O (am) operations

as will be shown in Sec §.

By applying the previous theorem using such a proper generator we can obtain a (possi-
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bly non-proper) generator of A®. By repeating this process, r times, we shall generate the
matrices

A(P'H) = A(r) - x;:‘)'yp(:‘)'r

A0 = 0D g

It tums out that this process gives a partial triangular factorization of AY; this follows by

noting that
' . .
AD = Zaly Sl + 40

i=1
(LT

3 \ - -
| Ypwi, O O
=[x xQ a0 405
yolr O ger+n)

Ll____l. - y

B D
Remark 3.1. If we define A = [C E] then it is easy to check that S*V=E - CB™'D.

The matrix S¢*V is called the Schur complement of B in A®. Notice that the above process

also gives a generator of S *V,

Remark 3.2. The above r step partial triangularization breaks down if and only if there is a
singular leading principal submatrix of order less than or equal to r; we shall assume that this

is not so.

The above procedure can be summarized in the following algorithm, which we shall call

a generalized Schur algorithm.

Algorithm (Generalized Schur Algorithm)
Input: A generator (X, Y) of A € R™* with respect o (F/, F®).

Output: (i) Partial triangular factors L € R™* and U € R"™ of A.
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(ii) A generator {X, Y} of the Schur complement of the r x r leading principal subma-
trix of A,
Procedure GeneralizedSchur
begin

fork =1 to r do begin
MakeProper;
The kth column of L :=X,,; The kthrow of U :=yL;;
Replace x,,, with F/x,,,;  Replace y,,, with F®y,,;

end

return (L, U, {X,Y})
end.

Note that the above procedure needs O (amr) operations, where a is the length of the

given generator, assuming that MakeProper takes O (om) operations (see Sec 5).

Example 3.1 Triangularization of block-Toeplitz or Toeplitz-block matrices.

As trivial examples we can triangularize block-Toeplitz matrices or Toeplitz-block
matrices simply by completing the above generalized Schur algorithm. Note that the multipli-

cations F ' X and F b Ypw amount to shifting down "segments” of Xy, and Y, .

Example 3.2 Simultaneous Factorization of a Toeplitz matrix and its Inverse [4].

Consider the matrix

T I
“‘:[: o]' T =) € R, t=1 ©

which has the following symmetric generator,

lt,-:,,_,lO-OT 10
X=loeg -ty10-0[ E=[o]
After performing n steps of partial triangular factorization using the gencralized Schur algo-

rithm, we shall have

L 00
A-[U][L’.UTH[O s]' W)

Now, one can check by comparing the entries of A in (6) and (7), that
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T=uT, T=uuT.
Remark 3.3 Recall that the classical Schur algorithm {20} gives only the factorization,
T =LLT, whereas the Levinson algorithm gives the factorization, ™' = UUT. If one only
needs the factorization of 7~ the above method is slower than the Levinson algorithm [18); a

derivation of the Levinson algorithm from the generalized Schur algorithm can be found in

Appendix 3.
Example 3.3 Orthogonalization of a fully windowed Toeplitz matrix.

Let T =(,_;) e R™* m > n be a fully windowed Toeplitz matrix, i.e.,

6;=0, ifj>i, or i>m-n+j
Then it is easy to check that C = T T is also an (unwindowed) Toeplitz matrix. Now consider

the following matrix

T 17 A
A= T o (8)

Jor which it can be checked that a generator of A is

COCL " Caoi t0 81 * tmn O - 0] 10
0 ¢y " Cup toty " tmy 00 ' 0 -1

After performing n steps of partial triangular factorization using the generalized Schur algo-

rithm, we shall have

RT r 00
A= Q [RvQ]"'OS' (9)

From (9), one can easily see that
TTT=RTR, T =0QR

s0 that Q is orthogonal because RTQTQR = RTR.

Remark 3.4 Recall that the (fixed AR) lattice filter operates on a (data) sequence {¢;} and per-

forms orthogonalization to get the prediction errors without a knowledge of the covariance




-36 -

matrix (i.e., TTT) of the data sequence. The lattice filter is again a Levinson-like version of

the above method.

4. Applications to non-Toeplitz matrices.

Now we shall consider various extended matrices M. By applying the generalized Schur
algorithm in Sec 3 to judiciously chosen extended matrices, we can obtain interesting results
including QR factorizations of block-Toeplitz or Toeplitz-block matrices.

Generators of extended matrices in this section can be also easily found by inspection.

For closed forms of various generators, see Appendix 4.

A. QR factorization.

Let A € R™* be a block-Toeplitz or a Toeplitz-block matrix, and let us define the block
matrix,

-1 A O
M=|AT 0 AT | (10)
0 A I
If we apply the generalized Schur algorithm to (10) then after the mth step we shall have a

generator 1 of
ATA AT
A 1l an
After another n-steps of partial triangularization, we shall have
ATA AT RT r 00
A 1|l R I+|p s (12)

Now, one can check that the matrices Q and R in (13) satisfy

A=QR, QTQ=lI,
i.e., we obtained the QR factorization of A. This procedure will need O (mn) flops.

t One can start with & generator of the extended matrix (11), as in Example 3.3. A closed-form expres-
sion for s generator of (11) for block-Toeplitz and Toeplitz-block matrix A can be found in Appendix.




-37-

If one wish to compute R~ directly, then one can perform the (m+n) steps of partial tri-

angularization with the matrix,

S L

M=|A

ATA | RT r o0
1 o|=|u|[TRU I+|p 5|

and therefore, U = R~ because UR =1.

(o]
-~ Q >
O~ 0O

Note that

B. Removing Forward Elimination in Square Systems.
If one’s primary interest in the factorization is in solving a square system of equations,

Ax=b, (13)
then one might want to obtain the transformed right-side vector y = L™'b, during the course of

the factorization process. This can be done by performing the following partial triangular fac-

torization of the matrix M,
A L T
M= —bT = yT L
whence the solution to (13) can be obtained by solving the triangular system of equations,
LTx= y. 14
C. Removing Back-Substitution in Square Systems.

From a hardware implementation point of view, the back-substitution step in (14) can still
be quite cumbersome [6]. This back-substitution process can also be eliminated by performing

the partial factorization of the matrix,

w-[17]

Notice that the solution x = A~'b is the Schur complement of A in M. Therefore, after n steps
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of partial triangularization, we shall have a generator of the solution, from which we can read

out the solution; see [6] for details.

D. Solving Least Squares Problems without Back-substitution.

To solve the weighted least squares problem of minimizing

where A, and A, are block-Toeplitz or Toeplitz-block matrices, we form the matrix

-A, A, -b
M=| AT 0 o
o I 0

Now notice that the least squares solution,

x=(ATA;1A ) 'ATb (15)
is the Schur complement of the submatrix

-Az A
AT o
Therefore, after m+n steps of the generalized Schur algorithm, we shall have a generator of

the solution (15), from which the solution can be read out [6].

E. Regularization.
If the given Toeplitz least squares system is particularly ill-conditioned, it is meaningless
to compute the exact (least squares) solution, since small perturbations of the matrix can cause

very large perturbations in the solution. In such cases, we may solve the following regularized

system [10), (19}

(o]

by partial triangularization of the matrix
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A b
O
ATnr oo
O 1o

After m+2n steps of the generalized Schur algorithm, we shall have the solution. We may

M=

remark that this technique of regularization is known as the leakage method (adding white

noise with variance n? to the data sample) in the signal processing literature (see e.g. [3).

5. Construction of Proper Generators.

We shall present a method for constructing a proper generator using spinors; for a
method using Householder matrices, see Appendix. A spinor S(;j;) € R®? is defined as the
identity matrix e*cept for the following 4 entries,

[Sgidis =¢v [Sgiykiy =52 Sgiplii =—=s1, Sl =¢,
where [A]; ; denotes the (i, j)th element of the matrix A, and c¢2 + 5,5, = 1. The parameters
{c, 51, 52} will be called Schur parameters. Notice that the inverse of a spinor is also a spi-
nor, viz., § GL-) is the identity matrix except for the following 4 entries,

S§holii=c, S§lykiy=-s2 SGlji =51 5Gly)ij =
Let x € R™ and y™ € R™ be row vectors. Let c, 5, and 5, be chosen as

2
x.y. x. y.
c=|—2 | | sy=—c-k, sy=-c,
Xiyi +X;y; x;

and define x’" and y’ by

X’T - XTSU“), y’T = ’Ts(j{t)
Then it is easy to check that x;" = y;" = 0, and xTy = xTy. We shall call the elements x; and

Yi pivoting elements. Therefore, by repeating this process we can annihilate all elements of x

and y except the pivoting elements, resulting in

[+ 3 a
- .. =x! —TIre-
(0.0.5,0.. 0] =x" IS, {0,050, 0] =y TS5,
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An arbitrary choice of pivoting element or an arbitrary ordering of annihilation, might

x. .
result in (1 + ~24.] < 0, for which real spinors do not exist. The following function remms an

(4}

index "pvt”, and two sets of indices, FIRST and NEXT; if we annihilate the elements in x7
and y” whose indices are given in the set FIRST, pivoting with the element x,,, and Y.

before the annihilation of the elements given in the set NEXT, then it is not hard to see that

x. .
n+—% y<o.
Xpvt Ypw

Procedure FindOrdering
begin
Compute y; = x;y; forall1si s a
s =¥
Pset:= (i ly;,>0);Nset:={ily;<0};Zset:={ily;=0})
if s >0 then
pvt := any i € Pset;
FIRST := Pset; NEXT := Nset;
else if s <O then
pvt ;= any i € Nset;
FIRST := Nset; NEXT := Pset;
else /* Cannot rotate */
return (s);
Add Zset cither to FIRST or NEXT;
return (pvt, FIRST, NEXT)
end

With FindOrdering, we can summarize the procedure for constructing proper generators.

Procedure MakeProper
begin
x” := first non-zero row of X; y7 := first non-zero row of Y;
FindOrdering;
if s =0 then
return ("A has a singular minor”);
for each j € FIRST, and then for each j € NEXT
Determine S(ﬂﬂ) to annihilate X; and Y
X =XSGipwy Y =YSGluw
end;
return ({(X, Y))
end;
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Remark 5.1 The quantity s = Y'¥; that is used to find the annihilation ordering is the product
of the diagonal elements /g ,-u; x of the partial triangular matrices L and U obtained by the
generalized Schur algorithm. Therefore, s > 0 for positive- definite symmetric matrices, and
s < 0 for negative-definite symmetric matrices. Hence, for these mainces we can choose a sin-

gle column as a pivoting column throughout the triangularization process.

Some Special Cases.

If we are given a symmetric generator of a symmetric matrix A4, i.e,, if Y = X I, then the
updating of Y in the above procedure is redundant, because the updated {X’, Y’} after annihi-
lating a row is still symmetric. To see this, let

xT = yT = [xpva y/]-
Then the spinor that annihilates x; will reduce to a Givens rotation,

c -5
G(ﬂpvtﬁ{s c]' c+s5?=1

On the other hand, if

u’ = upwe s 4;), v = U

the spinor will become a hyperbolic rotation,

ch —sh 3 2

Notice that Givens and hyperbolic rotations preserve the symmetry of the updated generator,
ie.,

YST =Y '=X'E, X'=XS, S:aGivens or hyperbolic rotation.

As another special case of spinors, consider the two row vectors
ul = [y, i), VT = [V, O).

For this case, the spinor that annihilates 4; will reduce to the usual elimination matrix,

i -Xg u;
Egew=]0 1 } Kz=;”;—- (16)
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Example 5.1 The celebrated "Routh procedure” [11] for stability testing is just a triangulari-

zation using our generalized Schur algorithm of the Hurwitz matrix of Example 2.1.

Example 5.2 Consider the following Toeplitz-block matrix called the "Sylvester matrix” [11],

fao bo ]
a; ap b, by
.oay . . by .
S=|a, . .agby . . by|e ROHImm) amn
a, . a by . by
i % bm |

A nonsingular Sylvester matrix is always strongly nonsingular, and therefore, we can check
whether a Sylvester matrix is singular or not by using the generalized Schur algorithm. The
matrix S in (17) has a generator, with respect t0 {Zy,n, Zy ®Z, },

bo by - - by 00 0 -010-0 as

When we apply the reduction technique to X and Y in (18), the spinors during the first n steps

aoan-a.OO-O}T [10-00 -o]T

will be just the elimination matrices of (16).

Remark 5.2 For the triangular factorization of a block-Toepliz matrix, one may use the
block-spinor,
1 K, 1 K, 1+KKkY o0
S=[—K§ I ]U-l' S-T‘—'[-K{ I }L_T’ W=l o 1+xk,
to annihilate X5, pivoting with X, ,, by choosing K = X{}X2;. However, the use of matrix
inversion in the block rotation makes the control flow in most hardware implementations com-
plicated, and therefore, the use of block rotations is often discouraged; our recommendation is

to use the generalized Schur algorithm, which only operates on selected columns of scalars.
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6. Concluding Remarks.

We have shown how to obtain triangular factorization and QR factorization of Toeplitz-
block or block-Toeplitz matrices in O (mn) flops. Our method is based on the displacement

structure properties of matrices. We also presented some other applications of our algorithm.

We have generalized earlier definitions (see e.g. [14-17]) of the displacement for
Toeplitz-like matrices and presented a correspondingly generalized Schur algorithm for their
factorization. The extended definition allows us to handle block-Toeplitz and Toeplitz-block
matrices and Schur complements with respect to the leading (block) entries of such matrices.
Composite matrices obtained as products and inverses of Toeplitz matrices can be nicely han-
dled by formulating them as Schur complements of entries in a suitably defined block-Toeplitz
matrix. Some interesting examples were given in Sec 4; Several of them will be considered in
other ways in other chapters in this thesis.

We also mention that displacement structure can also be introduced for Hankel and
Hankel-like matrices (see e.g. {17]) and also Vandermonde-like matrices; analogs of the (gen-
eralized) definitions, algorithms and applications in this chapter have also been obtained for

these matrices (see Chapter 4 or (5]).

APPENDIX 1.

Finding Generators of Matrices.

Once we have the displacement of a matrix, we can obtain a generator of the matrix by
representing each pair of non-zero columns and rows that crosses at the main diagonal as a
sum of two rank-onc matrices. As an example, the displacement Vg, ps, in (10) can

represented as follows;




Po 0

P T ni oL
Verm=|p, |8 tall Bots Yo Y1, Y2 14 v | &

Bs | L

where e; denotes the vector with 1 at the i th position and 0’s elsewhere.

In general, the following procedure can be used to find a generator from the given dis-

placement with O (mn) flops.

Algorithm (Finding a generator)

Input: The displacement V(F, P
Qutput: A generator {X, Y]} of A

Procedure FindGenerator
X=6¢:Y =0¢;
while there is non-zero column or row
for each pair of a column u and a row v/ that crosses in the i th position of the main
diagonal of V -/ »;A begin
if u; # O then begin
G=wy'i U =uexceptd; =0;
V = v/u;'% v = v except V; = 0;
end
else begin
G = u except &; = 1/2; U := u except &; = ~1/2;
V= v except ¥; = 1/2; V ;= v except ¥; = —1/2;
end;
X =[X,0,0sY =(Y,V -¥];
Remove u and v;
end;

for each an unpaired ith column u begin
X =[X,ulY  =[Y,¢)
Remove u and v;

end

for each an unpaired jth row v’ begin
x = [xo e]]; Y = [Yv V];
Remove u and v;
end
return (X, Y)
end
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APPENDIX 2.

Construction of a Proper Generaioi using Householder matrices.
The matrix E of the form,

E=1-2uv, uv=1

will be called a Householder matrix. If u = v, then the matrix E reduces to the usual (orthog-
onal) Householder matrix. One can check that E has self-inverse, i.e.,
E=E.
Letx e R™* ye R and X € R™*%, ¥ € R"™® are given vectors that satisfy

Xy=xTy, xTy=xTy.
For such vectors, we shall show how to find £ such that

xT =x"E, yT=y'ET. (A2.1)
To to this, first notice that (A2.1) can be re-written as

XT=xT - 287, yT=y" -28u7, By=x"u, By=y’v
so that

v=[x-xV28,, u=[y-y)2p, (A2.2)
Therefore,

yv=B=y [x-x128,, x"u=B,=x"ly-y)2p,
Hence, the Householder matrix £ where u and v, and therefore B, and f, are chosen such that

288 =y Ix-x1=x"[y-y)
will satisfy (A2.2).
Let {X, Y} be a non-proper generator, and let x” and y’ denote the top-most non-zero
rows of X and Y. To make {X, Y] be proper, we choose a pivoting column, and post- multi-
ply X and ¥ with E and E”, respectively, so that

ir=xE=[0.--,O.x”'.o,--,O]T, fT=YET=[0.°'.0.y,.,'.0."-O]T-
We summarize this procedure below.
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Procedure MakeProper

begin
xT := first non-zero row of X; yT := first non-zero row of Y ;
s =x"y;
if s = 0 then

return ("Matrix has a singular minor");

Choose an appropriate column as pivoting column;
Xoi' =5 %otV Yow” = T YpwlXpws
Bi=1 PBr=(x-x1y2
u=[y-ylI2p; vi=[kx-xI12
X:=X-2Xuv!; Y:=Y-2rwl;
return ({X, Y });

end.

APPENDIX 3.

1. Derivation of Levinson Algorithm from generalized Schur Algorithm

Let X be the generator obtained after the kth step (k < n) of partial triangularization,
starting with the generator X;
T

x® [0 0 hhx hox - by wiy - Uy O -0

0-00 Wislhk - Wax Mg © Uy 0-0 (A3.)

If we can obtain ; ; and wy,;, from u; ;'s in (A3.1), then we can compute the Schur parame-
ters for the next hyperbolic rotation, and apply the rotation only to the bottom part of (A3.1);

uu--uuo--o
u,,_,--uuo--O'

First notice that
ST NT S 2112 shi
by = T(ch? - sh)'? = (1 - kD)2, k; = =~ (A3.2)
in} i=l ch;
Also it is easy to check that
_ - r - 1 lu 133 : lu—l.n-l ln;l
1 - 1 u;, Uy 4 wyy 0 0 0 0
4 1 2 0 U2 Up-tn Wiy Wiz 0
ty 6 \ 0 \ = wu\ ,
. . . 0
_'n—l b2 1 ] Lo 0 U1a J Wel Wea W3 ° Wy, 0
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Hence
Ug x
Up—1x

Wil = [ s fe-t1r * 0 s 1 ] ‘ * (A3.3)

uu

-

and therefore, k, = wyy) /g ; can be computed by (A3.2) and (A3.3) yielding the Levinson

algorithm.

2. Derivation of Lattice filtering Algorithm from generalized Schur Algorithm.

Let X®) be the generator obtained after the kth step (k S n) of partial triangularization,

starting with the generator X(*);

£® 0 Ly lnp * g b1x * Dpopsr-1x 0 - 0 T
1O - 0 wegs c Way fix  Fmonsk-ix 0 - O
where
[bl.l’ T bm—n.l] = Ul,b . 'fm—n,l] = [to- ST tm-n]'
Again it is easy to see that
_ ] fiu fiz o i
o 41 | 0 . . . 0. .
0 ¢ty [ A .
0 \\ \ fm-n.l
) o 5 0 fm-n+l.l *
00 0 lo ‘l—l . . . e . .
0 0 “ fma
1 1y U35 N SRR
wyy 0 00— O 0
wi w3z O
= (A34)
W4.3
0
Wet We2 Wes3 * Wya-i 0

Using (A3.4) and the fact that TTQ = RT, one can show that
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the ith diagonal element of Q7S = —%;.
Therefore, we have an alternative way of computing the reflection coefficients,

_ b,

k = ~E%
* blb,

’ bg = [bu, t T b,.-.u_ulro fg = [fu' . vfm-lH-k-l,k]T-
APPENDIX 4.

We shall give generators of some of important matrices explicitly. By using these gen-
erators, one would not need to use the procedure FindGenerator in Appendix 1, and for those

matrices the operation count will reduce significantly.

Lemma A4-1 Generator for block Toeplitz matrices.

For the matrix A, in (1a), a generator (X, Y) of A, with respect to (Z§,. Z),} is given

T
I, B\Bg' - - By.Bg' By B, - - B.yu

X=lo BiB5' - - By.Bg' |’ Y=lo 8., - Bau

Proof. By applying one step of (block) Gaussian elimination, we have
A - Zﬁruﬁr = xl’lr- K,
where K = x{Vy{" is the Schur complement of A;. O
Lemma A4-2 Generator for Toeplitz block matrices.
Let Aye R™ be an M xN array of Toepliz marrices, T;j € R™", where
M N
Xm;= Yn =n. Leta;; denote the first column of T; ; and b[; denote the first row of T, ;,

with the first element equals to zero. Them a generator of A;, (X,Y) with respect to

M N
(© 2w, 82} is given by
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1 r
(31.1 Q2 c (y € - e - - - by by - hM,l1
az" au . aw . el . . . el . . bl.2 bz‘z . sz
X=| - . . . oY=l - ..
Lau.n a2t N T @ | e by by - by

Proof. The matrix A — F,AF] has non-zero elements only on the 1st row and 1st columns of
each block. Among other possibilities, if one assigns vertical strips to x; and the rest horizon-

tal strips to y;, then the above generator resulls. a

Lemma A4-3 Generator for orthogonalization of block Toeplitz matrices.

IfAy is an M x N Toeplitz array of square matrices B; € R as in (la), then a gen-

ATA, AT

A, 1 with respect to F = 2, ®2Z},, where L=1,, @ -1,

erator (X,XZ) of M :[

w
is givenby X = [ v } where

BS) o 0 0 BS I BoS O
BsS| B, BS | Bua BS O BS O
w=|all | . Al | . vl . .
By_1S} Byu  |Bu-1S) Bu-nn By S O By S O

M-1
where S = (( 3 BTB;) "2 .
i=Q

Proof. This is a straight-forward extensions of Lemma 2 in [4]. a

Lemma A4-4 Generator for Orthogonalization of Toeplitz-block Row
Let A =(T,, Ty ., Ty ), where Tj € R™™ are Toeplits. Let a; be the first column of
T;, B] be the first row of T; with the first element equals 1 zero, and c[ be the last row of T;

ATA AT
shifted right by one position. a gemerator (X,XZX) of [ A I ] with respect t0

N
F = [.,912,,162,.. where L= Iy,; ® —In,,, is given by
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wy w2 WN W+t o 2 ’ Uy WoN42
X =1 ayllall ayllagll - ayfllayll e ayilaght agllaghl - ay/ayll 0
where
w; = AC g lla;ll,  wy, =] b .. bf I,
)
w=w; " waa=lef.of,...F Y,

and A®) is the masrix obtained after setting the first columns of all blocks up to the ith block

by null vectors.

Proof. Notice that the 1st row of ATA — FATAFT is ATA, the n,th row is ATAD, and the
(ny +nth row is AJA® and so on. Therefore, to each of above rows, pre-multiply
corresponding columns crossing on the diagonal to get rank-one matrices, and apply Cholesky
factorization to each rank-one matrix. The first Cholesky factors are w;, 1Si <N, and the
Schur complements are w;, N+2 < i < 2N+1. The rest part of the matrix ATA ~FATAFT is
rank-one, Wy, Wa.,2.

For V, notice that K7y, (W;, F) — KXy .2 (Wx,;41, F) has nonzero elements 114; |1 on the
diagonal of the T; block. Therefore,

Kanviais ZndKinaa (Wis F) + KonsaOWnsists Zn)K a2 (Whaiat, F)

forms the lower-triangular past of the T; block. Kov.2(Vns1r Zm)K ez (Wast, F) forms the

rest upper triangular parts of all blocks. O

Lemma A4-5 Generator for Orthogonalization of stacked Matrices.

Let AT =(A],A],. AL ), where A; € R™". Let (X;, X;%:), be a generator of

: [ Ala; AT
M®D with respect 0 F =F,@F,, where M©= A 1| Them the matrix
(]

ATA AT M
M=| .  |hasagenerawr (X, XE), with re:pecttoF:FzQ[‘gF,,] where

W
XI{V]. W-[X,....X,,]. V’YIQ"'Q”“-
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Proof Because ATA = YATA;, we have

ATA - F,ATAFY = 31 ATA; - F.ATAFT 1 =wIwT,
Also

Ay - FuAFT |

A—FAF;: ' =vwT, a

Ay — FMHAMF;

L

Lemma A4-6 Generator for Orthogonalization of Toeplitz block Matrices.

Let A be an MxN array of Toeplitz matrices T;; eR™%™_ Then the marrix

[ATA AT

A I ] has a generator (X,XZ} with respect to F\=Z, @Zn,® - ' ®Z,, and

F,=2,02Z,® - ® Z,,, where

X=(Wl,vI)T, W=[W,....Wyl] V=V,@eV® - &Vy,
ATA; - FoATAFY =wL,w], A -Z, A F] =V,W]
Ai=[T T2 ... Tin ).

Proof. Immediate from Lemma A4-4 and A4-5. a
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Chapter 3.

Generalization of Gohberg-Semencul Formulas

Abstract

Gohberg and Semencul gave some elegant formulas for the inverse of a Toeplitz matrix
as a difference of products of lower and upper- triangular Toeplitz matrices. There are several
algebraic and analytic proof of these formulas. Here we give a "constructive” proof for the
Gohberg-Semencul formulas, under the assumption that the matrices are strongly non-singular,
i.e., all leading minors are nonzero. This assumption is stronger than necessary, but it enables
fast O (n?) constructions for the entries in the Gohberg-Semencul formulas. Our method also

gives a natural generalization of the formula to matrices with displacement structure.
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1. Introduction.

If T is a Toeplitz matrix,

T= (C,-_j) € Rnx. ’
then one can easily show that T has the following displacement representation (5, 13-16],

- Tr 1 - 7

co O 0 |lcoca Cra 0 o0 0 0f[|0c¢caca Cira
c1 <o 0 cog C2e cp 0O - 10 0 ¢, €24
C0T= . . . . . - . cy .. . . . 1)
0 - . ) . . 0 0ol - - c
.cn—l €2 Co| i 0 0 o | | Cha € 0- | 0 0 0 0 |

It is an interesting fact (5] that T! also has a similar displacement representation. To
give an explicit formula, we assume that the matrix T and its (r1~1) X (n—1) leading principal
submatrix are nonsingular. Let z and v denote the first and last columns of T, respectively.

Then it tumns out that we can write

0 olpva wilfo o o000 =
2, 2, 0 v, v, v, O - - 1{0 0 2z, Zy
2, Tl=f . . . T N | P )
oft - - Vauf | - - ool - zy
% Zn-1 2] .0 0 Va | |Va-1 Va2 V1 OJ 00 0 0

It also holds that z, = v,. This formula was first -given by Gohberg and Semencul in 1972 {7,
p. 86], [10] as one of a set of slightly different formulas of the type (2) for T!. We shall
describe a variant in Sec 2 (see Remark 2 in Sec 2). Here it is interesting to note that a simple
inspection of (2) yields the following recursive formula for the elements of T

20T Yiargor = 2T i j + ZisiVacj = Vizaojurs [Alij ® (.J) clementof A,  (3)
which was in fact first derived by Trench [21] in 1964. Its relationship to the Gohberg-
Semencul formulas and connections with the Christoffel-Darboux formulas for orthogonal poly-

nomials on the unit circle were made in {16).
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As one might expect from the above discussion, there can be several ways of establishing
Gohberg-Semencul formulas. But all presently known proofs involve a certain amount of alge-
braic and analytical manipulation. In this chapter we shall describe what may be regarded as a
"constructive” proof for Gohberg-Semencul formulas [7, p. 86, p.89] under the rather restric-
tive condition of strongly non-singular T, i.e., T with all leading minors nonsingular. On the
other hand, with this assumption, there are "fast" O (n?) algorithms for actually computing the
Gohberg-Semencul expressions.

Our proof follows the so-called "array method” discussed in {4]. In the array method, the
triangular factors of T~! and T are simultaneously obtained via a sequence of elementary
hyperbolic rotations applied to a certain "pre-array” of scalars. We show in this note that a
slight modification of the pre-array leads to Gohberg-Semencul formulas. Our approach can be

extended to obtain formulas of the Gohberg-Semencul type for "close-to-Toeplitz" matrices.

The present contribution grew out of our studies on constructive algorithms [4] for fast
triangular and orthogonal factorizations of matrices given in a so-called displacement represen-
tation (see [14]). We discovered that one of these constructions not only gave a Gohberg-
Semencul formula for the inverse of a Toeplitz matrix, but also indicated a natural method of

extending the formulas to general non-Toeplitz matrices.
The displacement of a matrix A € R™* has been defined as [14]
VA=A-Z,AZ], @
where Z, is the n X n lower shift matrix with ones on the first subdiagonal and zeros every-
where else. Suppose that VA is expressed as a sum of outer products,

a
VA =Yx yl.

inl

Then it is easy to see, using the nilpotency of Z,, that A can be written as a sum of products,

A= iux.-)ﬂm ), (S)

iml
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where as before L(x) denotes a lower triangular Toeplitz matrix with the first column x. The
expression in (5) is called the displacement representation of A. For symmetric matrices we
can refine this to the form,
P T p+q T
A=JTLx)L (x) - ¥ Lx)L (x)). (6)
i=1 i=p+1
For a simple example, consider a symmetric Toeplitz matrix, T = (¢;_;), co=1. Then

we can see that

1 Cy ° ° Cy
¢y
VI=T-2,TZ2T=| . O = x;x7 - X%,

Ca

where

xl=[l’cly'."cn]1‘. X2=[0.L‘1."',C,|]T.
It follows, as noted in (6), that
T = L(x))L7 (x,) - LixpLT (x). Q)

The fact that the Gohberg-Semencul formula (3) for T~! has a similar form as (7) is not
an accident. In fact, it was shown in (13, 14] that if the matrix A has the form (5), then TA™'T
(where 1 is the matrix with ones on the reverse-diagonal and zeros elsewhere) has the represen-

tation,

1a-1-= _f;lux; LT@), or A= f:llfm L) ®
with certain vectors {x;, y;}. (We may note that if we insist on a lower-upper type representa-
tion for A~!, we can always obtain this but with o + 2 terms in general). The formula (8)
would be a generalization of the Gohberg-Semencul formula to arbitrary matrices, except that
the proof in [14] did not show how to actually construct a displacement representation of TA™'

or A™! from a displacement representation of A.




-58 -

This construction will be supplied in this chapter for a large class of matrices, and in
principle for all matrices. We shall first give a constructive proof of Gohberg-Semencul for-
mula in Sec 2. In Sec 3 we shall generalize the earlier notion of displacement representation.

Then we shall show that a certain partial triangularization procedure of the 2 x 2 block matrix,

A A2 .
= Ayr Ags |’ A, = strongly nonsingular, ®

easily yields a displacement representation of the so called Schur-complement of A, ,, i€., a
representation
-1 4 T 3 T
Az — Ay ATiA 2= JL)L () - ¥ L(x)L' ().
i=l

i=p+l
As an example, we shall obtain the Gohberg-Semencul formula for a Toeplitz matrix by apply-

N

where the Schur complement of T is just ~T~'. Then in Sec 4, we shall apply the procedure

ing the procedure 10 the block matrix

in Sec 3 to various matrices, e.g.,

T 1 T, T, T 17 ™1 17
I O ™V o T I} I O

to obtain generalized Gohberg-Semencul formulas, or, equivalently, displacement representa-

tions, of the matrices,
an?, 1T, T, i
2. A Constructive Proof of two Gohberg-Semencul Formulas.
Let us consider a symmetric positive definite Toeplitz matrix T = (c;_;) € R, co=1.
Later, we shall indicate simple modifications of the proof for nonsysametric but strongly non-

singular Toeplitz matrices. As shown in Sec 1, T has the representation,

T = L(x;)LT (x;) = L(xpLT (x,).
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Let us define the pre-array Ay, and a diagonal matrix J,

I
L(x;) O, L(x» "
Aoa[ 11 o I ]e R¥Ss = I, € R3S, (10)

-1,
where O, and I, denotes the n x n null matrix, and the n x n identity matrix, respectively.
Suppose that we can find a J-orthogonal matrix © € R33*, viz., one satisfying 6J6T = J,

such that the post-array A¢©® has the form

L 0, O,
' (11

A=A8= [U Loy Lo
where L is a lower triangular matrix, and L(y,), L(y,) are lower triangular Toeplitz matrices

whose first columns are some y,; and y,, respectively, while U is not a priori constrained in

anyway. Then, because of the J-orthogonality of ©,

AoJA] = AJAT,
which yields the following identities
L(x;)LT(x;) - L)L T (xp = T = LL7, (122)
L(x;) - L(xy) = I, = LU", (12b)
UUT + L)LY (yy) - Lay)LT (79 = O,. (12c)

From (12b), we see that L~! = UT (therefore, U is upper triangular). Now (12a) shows that

T!'=L7L' = Ul (13a)
Therefore, (12c) implies that T~ has the following displacement representation,

T = Le)L () - Lol  00). (13b)

Next we shall show how to construct © so as to obtain a post-array A of the form (11).

This can be done in several ways, but perhaps the simplest is to construct © as a product of
elementary hyperbolic rotations, which are J-orthogonal. (We could also use hyperbolic
Householder reflections.) Hyperbolic rotations, H; ;(x) are defined as identity matrices except

for the following four entries,
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1 -K
H; ;(0)i; = H; ;(®)];; = Ty (H; ;0 j = (H; ;) = o (14)
We call the pair of indices (i,j), the plane of rotation. The matrix H; ;(x) is real and finite
when x| < 1. In signal processing applications, x is often called a reflection coefficient. Let
wl be a row vector with lw;| > lw;l. We can annihilate w;, pivoting with w;, by post-
multiplying w’ with H; ;(w;/w,),

[W‘ cCW; ot WJ M Wn]H|J(WJ/W‘) = [W‘ .- wi' . wj—l 0wj+l b W,,].
For a moment, let us assume that the magnitude of pivoting elements is always greater than
that of pivoted elements and therefore, that k| < 1. A lemma given in the Appendix shows

that this assumption is always valid for a positive definite T.

A Simple Example.

Our construction is perhaps best followed with a simple example. Thus, before we
describe the general procedure, we shall illustrate the details with a 3 x 3 symmetric positive
definite Toeplitz matrix,

1 oy o
T = a] l a[ [ xl = [l, (ll. %]T' x2 = [00 aln OQ]T'

o o 1
We post-multiply the pre-array,

L(x) O, L{(xp)
'[ 1l 0, I ]ERM' as)

with hyperbolic rotations H,7(x;) and H,g(x;), where x; = oy, to annihilate the 1st sub-
diagonal of L(x,) pivoting with the diagonal of L(x,) (see (16) below). To preserve the Toe-
plitz structure at the (2, 3) block, we also apply a "dummy” hyperbolic rotation Hyg(x;). This
will introduce a nonzero element B, at the lower left comer in the (2, 2) block. These steps

are illustrated below.
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(1 [ 1 ]
o 1 oy a B
o ol o oy a B 1 By oy
Ao - (162)
1 1 1 B Bs
1 1 Bs Bs 1
1 1] 1 1
Ay Hy5(xy)
B 1 [ ]
a; B o, B
a B B Bs a B, B Bs
- = A, (16b)
1 PB4 Bs 1 B4 Bs
Bs Ba Ba Bs Bs Bs Bs Bs
Bs e 1 I Bs| Ba Ba Bs |
Ay H, 7(x)-Hy g(x) Ay Hy 7(x;)-Ha g(x1)-Hy (1)

Now we post-multiply A, with the hyperbolic rotation Hj.(x;), where x; = B4/By. t0

annihilate the remaining element B, in the (1, 3) block of A;. Again to preserve the Toeplitz

structure in the (2, 3) block, we apply two dummy hyperbolic rotations, Hyg(x2) and Hsg(x)

1c cbtain A.
B ] [ 1
o, B a; By
a B ™ o B ™
- (16¢0)
1 Be v Ya 1 B % Y4
Bs 15 T Bs Bs |72 s Ya
| Y B B BeBs] | e Imwvwn
ApHs A(x) Ay Hj 7(x2)-Hy g(x2) Hs 9(x)
L 0, O,
=[u Loy Lop | =3 an

Then as noted before (cf. (13b)), we have
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T = LopL (7)) - L)L ().
The general procedure.

In general, we successively annihilate the Ist, 2nd, - -, (n—I)th subdiagonals of the
lower triangular matrix in the (1,3) block of Ay, by post-multiplying Ay with a sequence of
hyperbolic rotations. The procedure of annihilating the ith subdiagonal will be called the ith
sweep, and the array obtained after the ith sweep will be denoted with A;. In the ith sweep,
we apply hyperbolic rotations on the following two sets of planes in A;_;,

A; = {(i+12n41), (i42,2n+42), - -, (n,3n-i)}, (183)

D; s {(n+1,3n—i+1), (n+2,3n-i+2), - -, (n+i,3n)}, (18b)
where A; and D; stand for the sets of planes on which "annihilating” hyperbolic rotations and

"dummy" hyperbolic rotations are applied, respectively. Thus, if we display (18) for each

sweep, we have the pictorial representation;

i=1 23~—n n+1\ 2n+1 2n+42 /3n-1 3n

=2 3 - nn+l n+2 2n+1 2n+2)3n—2 3n-1 3n

N N [ /2n+2/ |

i=n-1 n n+l n+2 — 2n-1 2n+1 2p42 —————— 3n
pivoting columns pivoted columns

Within a given A; (or D;), any ordering of rotations can be chosen because the planes in (18a)
(or (18b)) are "disjoint”.

Nowe that Ay has “Toeplitz structure” in the columns (1,2,- -,2») and
(2n+1,2n42, -+ ,3n). Suppose that A;., has Toeplitz structure in the columns
(6, i41,--,2n) and 2n+1, 2142, - -, 3n). Then this Toeplitz structure allows us to choose
hyperbolic rotations on the set A; with identical reflection coefficients x;, to annihilate the ith

subdiagonal elements in the (2,3) block of A,_,,

By’ m A HL (%), Hy(6) 2 By 200 (06)8i02200006) * - By 300, (192)
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Furthermore, by applying hyperbolic rotations on the set D; with the same x;, we can keep the
Toeplitz structure in the columns of (i+1, i+2, - -, 2n) and (2n+1, 2n+2, - -, 3n) in A,,
A; 2 AHp(x;). Hp(x;) = Hyyy3s ia1()Hpi230-i42(K) - - Hyyi3s(%i).  (19b)
In each sweep, the null (1,2) block is untouched, and the lower triangularity of the (1,1) block
is maintained.
Hence, A,_; will be the form of A in (11), and will have Toeplitz structure in the
columns of (n, n+l, - - 2n) and (2n+1, 2n+2, - -, 3n). Therefore, the diagonal elements of
L(y;) will be zero and the first column of L(y,), (i.e., y,) will be identical to the Iast column

of U shifted down by one position.

Now we shall show that the displacement representation (13b) obtained by the above con-
struction is the (first) Gohberg-Semencul formula (2). Notice that
T e, = (LOILT (v — L)LY (7)le; = LGHLT (ve; = Ly, 1LyDey.

T e, = (UUT)e, = (U], ,Ue,,
where e; denotes the vector with 1 at the ith position and 0 elsewhere. Therefore,

First column of L(y;) = L(y,)e; = (T"'e,/[L(y)l, = z§ Pz,
First column of L(y;) = L(y,)e, = sd(Ue,) = sd (T 'e,)/[Ul, , = zisd (v),
where sd(v) denotes the vector v shifted-down by one position, and we have used the easily

verifiable fact that
=y = 2 _nn?
1=V, = [L(yz)]l.l = [U]n;v
With these identifications, the displacement representation (13b) is exactly the Gohberg-

Semencul formula (2).

Remark 1. The sequence of hyperbolic rotations, H, (x;) (see (19) for the notation) introduces
the ith superdiagonal in the (2,1) block, and the ith subdiagonal in the (2,3) block. On the

other hand, Hp (x;) introduces the (5~ )th subdiagonal in the (2,2) block.
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Remark 2. Readers may have noticed that our construction of A, and therefore, the resulting
displacement representation (13b) is not unique. This is because we can use any J-orthogonal
transformation matrix ©. In particular, we can apply extra hyperbolic rotations on D, with
any Ikl < 1, i.e., we can replace A,_, by

A, Hp, (x), (20)
and still have the form (11). In fact, the second Gohberg-Semencul formula [7, p. 89]
corresponds to the particular displacement representation (13b) obtained by choosing the
reflection coefficient x in (20) as the last reflection coefficient x, of any nonsingular

(n+1) x (n+1) Toeplitz matrix whose n x n leading principal submatrix is T.

Remark 3. Note that our construction of the Gohberg-Semencul formula needs O (n2) opera-
tions, because we need to keep track only two columns in A;, and apply only (n—1) different
2 x 2 hyperbolic rotations. Our construction here is closely related to the classical Schur algo-
rithm (13, 18, 20}, which has certain advantages for parallel computation. The first and last
columns of T~!, which define the matrices L, and L, in the Gohberg-Semencul formula, can
also be obtained with O (n?) operations by using the Levinson algorithm [S]. In fact, Trench

{21] used this algorithm to obtain the "differential form” (3) of the Gohberg-Semencul formula.

3. Generlaized Displacement Representations and Schur Complements

First, we shall generalize the concept of displacement representation, and then give a fast
triangularization algorithm for a certain 2 X 2 block matrix. During the triangularization pro-
cedure, displacement representations for the Schur complement of the (1, 1) block will natur-
ally arise.

The following sum-of-products representation of a matrix A € R™* is called a (general-

ized) displacement representation of A with respect to the displacement operators {Fy, Fa}:

A= ix.(!i. F‘)K: ;. F)

im}
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where F) € R*™ and F, € R™* are nilpotent matrices of index less than or equal w n, i.c.,
Ff=F}=0, and K,(x;, F)) € R™* and K,(y;, F) € R*™ are the so called Krylov
matrices,
K,(x;, F) = [x;, Fyx;, .., Fi7'x;), K, (v F) = [y;, Fayi, . . . F)ly;

The matrix pair, { X, Y }, where X =[x}, X3, .., X, ] and Y=2[y,,¥2, .., Yo ] is called a
generator of A (with respect to {F,, F2}), and is denoted G 4(A, Fy, F;). The number o is
called the length of the generator (with respect to {F,, F,]). A generator of A with the
minimal possible length is called a minimal generator. The length of the minimal generator of

A is called the displacement rank of A (with respect to {F;, F,}), and denoted as a(A, F,, F,).

If the matrix A is symmetric, then A can be represented as

A= SK,&, DK, P - '3 K, (x, K (x. F), @)
i=l i=p+1
and the generator G,,, (A, F, F) can be written as { X, XZ }, where X =([x,,..., pag )

and £ = I, @-I,.

A displacement representation of a matrix A can be obtained by using the following

lemma, whose simple proof we shall omit.
Lemma. For any A € R™*, if F, or F, is nilpotent, there exists o < min(m, n) such that

A= 3K, F)KIGLF)  fandonty§ A -FAF] = Syl

inl i=]
In later developments an important role will be played by 2 x 2 block matrices (9). For
simplicity, we shall first consider a symmetric matrix,
[Au Az
=

Al Ay
where A, ; is a symmetric positive definite matrix, and A, is a symmetric matrix.

] € RMmPlim) A 1€ R™™, Ay € R™™, (22)

For the matrix A in (22) we shall choose both displacement operators as
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z, O
With this choice, K, (x;, F) in (10) will have the form

L(x;;)) O
Kuom @ )2 [y oy 0| € RO, L) e R™. Lix,) € R™7,

where [ x{;, xJ; ] = x7, and L(x,;) and L(x,;) are lower triangular Toeplitz matrices whose
first columns are x,; and x,;, respectively. The O’s denote rectangular nuil matrices of

appropriate sizes.

Generators of Schur Complements.
We shall now show how to obtain the displacement representation (with respect to Z,,

and Z,,) of the matrix A,,

A, 3 A -ADATIA,
which is the so-called Schur complement of A, ;.
1. Obtain a generator of A, say { X, XX }, Z=1, ® -I,.

2. Form the matrix A,
ARGy B, Kty B KGpots P -+ Ky m] @3a)
L(x;;) O L(x;,) O| |L(x1,.) O L(x1p+4) O
- [ [L(‘z.n) 0] N [uw 0] [uxw 0] B [uxw 0] ] @b
3. Post-multiply A by a J-orthogonal matrix ©, where J = Ijyim)p ®—I(rim)y (i€, the
matrix © is such that ©JO7 = J), that will transform A as follows (We shall show how
to do this in the proof):

L O
() K(xy, F) - [M L, }. L is lower-triangular; L, is lower triangular Toeplitz

00
(i) K(x;, F) = [L- 0]' L; is lower triangular Toeplitz, 2Si < p+y.
The result will be
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- e L O[]0 O 0O O -
A=48=Im L |L, O "|L,., O] | @4
Then it turns out that
Ay =LLT, (25a)
AT, =ML, (25b)
T ,-1 vt AN T
A=A -ApDATA = JLL - ¥ LL;. (25¢)
i=l imp 41

Note that the generator of A, has the same p and q as the given generator of A itself, a
fact first discovered by Morf (19] and used by him to derive "divide-and-conquer”-type algo-

rithms (see also (3]).

Proof The results in (253, b) follow immediately by equating the (1, 1) and (2, 1) blocks on
both sides of the equality,

A=AJAT = AQJOTAT = AJAT. (26)
Furthermore, equating the (2, 2) blocks of (26) gives

T A
A22=MM + ZL,‘L,' - Z L,‘L,-,
im] inxp+]

from which the equality (25¢) follows by noting that
MM = AT LTLA,, = ALATIA 2.

The only thing left to do is to show how to construct © so as to obtain A of the form
(24). This can be done in several ways, but perhaps the simplest and the most useful is to
construct @ as a product of (p+g)Xn+m) X (p+gXn+m) circular (or Givens) and hyperbolic
rotations. Givens rotations G; ;(x) with reflection coefficient «, are defined as identity matrices

except for the following four entries,

-X 1Y
a + Ixl)*’ (G:,j ;. (1 + IxlH#

We annihilate { L(x,,), I(x,3), . . , L(x; o+¢) } in (23b) with n sweeps (Oth, Ist,

(GiJ(K)];J=[GiJ(K)]jJ=(T+'_—|l;l—2)T- (G; (@) ;=

*+, (n—1)st sweeps). The kth sweep annihilates the kth sub-diagonals of the p~1 matrices,




-68 -

{ L(x; 9, L(Xy3). . , L(X;,) } with Givens rotations, and the kth sub-diagonals of the ¢

matrices, { L(X;p+1). L(X1542). - » L(X1544) } With hyperbolic rotations, pivoting with the

) diagonal elements in L(x, ;) in both cases.

' In the kth sweep, if k > n—m, then we apply ‘dummy’ rotations 1o the (n—k+1)st to the
mth columns of K(x;, F), pivoting with the (n+1)st to (m+k)th columns of K(x,, F), in order
to keep the Toeplitz structure in { L(x32), L(x33). . . L{(x3,,,) }. This will introduce a non-
zero lower triangular Toeplitz matrix in the (2, 2) block of K(x,, F). After the (n—1)st sweep,

we shall have A in (24).

Operation Counts.

To annihilate n rows out of n+m rows, we shall need approximately
n+m

4(p+q-1) ¥ k= 2(p+q—-1)x(n*+2nm+2m+n) multiplications. This will be less than the
k=

O (n*) multiplications needed to obtain the factors of a matrix A, and its inverse unless p +¢

is nearly n. There are many interesting matrices (see Sec 4) for which p+q <« n.

Example (A Gohberg-Semencul formula for Toeplitz matrices).

Let T = (ci-j) be an n x n Hemmitian positive definite Toeplitz matrix. Consider the

matrix

T I,
A= I, O 27N
For F=Z,@®Z,, it is easy to see that the displacement rank of A with respect to {F, F} is
two, and that a generator G,(A, F, F) is given by (X, XZ}, where

X1.1 X2
X= camei Camel ’ L= 1e-1,

where

I
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X1 =C6Uz‘[Co, Cis* *» C._I]T. X12=Cam-[o' Cpo ‘-’»-l]T- e =[ 1, o0, - . 0 ]T.
With this generator, the matrix A in (23) will have the form

1, 0 c5'?1, O (28)

Now note that the matrix A in (28) is in the form same as (10). The procedure will triangular-

R [L(xm) 0 L(x;y o}

ize the matrix A into a matrix A of the form (11),

LOOO
Z‘=UL,L,0-

Since the Schur complement of T in A in (27) is -T"!, formula (25c¢) will yield
T'=L,L] - L,LT.
Non Symmetric Matrices.

For non-symmetric rectangular matrices A one can formulate a similar procedure. We

form the matrices A; and A, as

ax [ Ku F. - Kw F) |, 8% [KOwF, - KOw F) |-
and annihilate the elements in A; and A; by post-multiplying A; and A, with spinor matrices,

instead of Givens and hyperbolic rotations. A spinor matrix is defined as the identity except

for the following four entries,

1
(1 + ke

Because of the invariance property that

-K X
(Sijlij = —, (S 2

Sijlii = (8i);; = (1 + xi)*%’ s = 1+ xp)*

A=4/A] =AS; ;1AL
a similar procedure to that in the symmetric case will give a displacement representation of A,,

[
A, m Ay - AyATiA 2 = TLU;, (30)

im]

where L; and U7 are lower triangular Toeplitz matrices.
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4. Some Generalized Gohberg-Semencul Formulas,

The first step of the procedure to obtain a generator for the matrix

A, =Az; - Az A[]A, is 10 find a generator of the matrix

Al A2
A= Au A
This can be done by using the lemma in Sec 3. In this section, we shall give generators of

some interesting A’s, from which the comesponding Gohberg-Semencul formulas for the

matrices of interest will be evident.

Example 1 (Generator of inverse).

Let B be an n X n symmetric positive-definite matrix, with a known generator,

(W, WX}, Z=I,@-I, with respect to {Z,, Z,}. Consider the matrix,
B I,
A= I, Ol (31)
Then by using the lemma in Sec 3, it is easy to see that { X, XX }, where

Wt W, @ Wp“ L WP"‘4 €
0 -- 0 e2 0 -- 0 -e2/[ I= 1p-'-l G_Iq-bl (32)
is a generator of A with respect to {Z, ®Z,, Z, ®Z, ). The length of the generator of B~

Xs=

obtained with the above A will be p+g+2. However, if the given generator G,., (B, Z,, Z,)
satisfies a condition called admissibility (18] then, as we shall see, we can obtain a generator of

B~! with a length less than p +q +2.

Examgyle 2 (Inversion with admissible generators).
A generator for a Hermitian matrix B € R*™*, ( W, WX }, £ = I, ®-I, with respect 1o
{Zx, Z,) is called admissible if e| € range (W), i.e., if there is a linear combination of the

columns of the generator that will give the unit vector.
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Let G, (B, Z,, Z,) be admissible, and

[ulv uzv Tt upﬂ]wr = elr.
Then it can be checked that the matrix,

B Iu 14 2 p+q 2
Asly ol nEZhlPo T (33)
L i=l i=p+l

has a generator { X, XT }, with respect 0 {Z, ®Z,, Z, ®Z, }, where

X Wi oo W W ot Wy
Tlmer v Bpe M€ 0 iy, €
Since the Schur complement of B in (33) is nl, — B™', we see that the generator of B!

}, =L, (34)

obtained with the A in (33) will have length p+g+1 if 1 # 0, or p+q if 1} = 0, consistent with

the results first obtained in [18].

For an example of a minimal admissible generator (besides generators of Toeplitz
matrices), let us consider an m % n Toeplitz matrix T = (¢;_;) with a full column rank. The
matrix T T has a minimal generator [4], { W, WE }, I = L@®-I,, with respect 0 {Z,, Z,},
where

wy = TTt‘/”t‘ll2. Wy = 12, Wy = Z,wa,. Wy = Z,,l,, (353)

tl=[ Copp €l " » Cml ]T, ﬁ2=[ 0, Copy " "2 Ctm ]T, ‘13[ Co—1r " " "+ Copyny ]T. (35b)

and t-11, denotes the Euclidean norm. This generator of T' T is admissible since

(111,11, 0, =171t 11, O)WT = ef. (36)
Therefore, the matrix A in (33) would have the form
T I,
As I, Of €7))

and the procedure will give a generator of (T7 T)™! of length 4. The displacement representa-

tion of (T7 T)"! is useful in solving Toeplitz least squares problems (m 2 n).

Example 3 (Generator of T{T;'T)).
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Let T, e R®™ and T,=(c;_;) € R*™ be Toeplitz, and symmetric positive-definite

Toeplitz, respectively. If we define

T, T,
A= [T,T o ] (38)
then A has a generator { X, XX }, T = I,@®-1,, with respectto {Z, ®Z,,, Z, ®Z,, }, where
Vi W V3 W
X= [u, e/2 u, -ellz]'
v, = the first column of T, devided by c{’?,
u, = the first column of T{,
v, = same as vy with the first entry equals to zero,

u, = the first column of T, with the first entry equals to zero.
With the above A, we can obtain a y:nerator of T/ T; T, with length 4.

The displacement representation of T,T T;'T, is useful in solving weighted Toeplitz least

squares problems (n 2 m), as arise in certain parametric time series identification problems.

Remark 1. One can obtain a generator of T{ T, by setting T in (38) with I,. This procedure
will need O(mn) computations, which is of the same order as evaluating the closed form

expression in (35a).

Remark 2. It is interesting to note that o(T{T;'Ty,Z,,Z,)<4, whereas
T{T,Ty, Z,,, Z,,) < 6. The reason is that the first matrix can be identified as the Schur
complement in a 2 x 2 block matrix, while to do so for T/T,T, requires going to a 3 x 3

block matrix wiiose displacement rank can be 6.

Remark 3. Once one has a generator of T/T;'T), one can obtain a generator of (T{ T3 T;)™!
using the matrix A in (31) and the generator in (32). This will give a generator of length 6.
However, it tums out that minimal generators of T{T;'T, are admissible (with | = 0), and the

displacement rank of (T{T3'T;)™" is less than or equal 10 4 (see Sec ).
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Example 4 (Generator of the projection operator).
Let T be an m x n Toeplitz matrix with full column rank. If we define
T T
A= T Inl s (39)
then { X, XX }, T = I, ®-I,, where
W W2 W3 W,
X=

tl/”tlnz € h/“t,“z 0
is a generator of A with respect to (Z, ®Z,, Z, ®Z,, ). By applying the procedure in Sec 3

], w; and t, are as in (35). (40)

to the above matrix A, we can obtain the generator (of length 4) of the projection operator
I, = T(TTT)™'T7 on the ((m~n)-dimensional) kemel of T”. Also, in this case, the matrix M

in (24) wums out to be the orthogonal basis of the range of T, because by (25a, b)
T'T=LL"T, and T=MLT, whichimplies M'M=I,, Me R™™.
In fact, we have the QR factorization of T (see also [4]).
Example 5 (Generator of the pseudo-inverse).
Let T be an m x n Toeplitz matrix with a full column rank. 1f we define
T T
A L Opm )
then by using the results in (36) and (40), we can see that A has a generator, { X, Y }, with

respect to (2, ®Z,, Z, ®Z,, )} where

X=ieitl, 0 eltll, 0 t/litl, e —tyliell, ©

and w; and t; are as in (35). With the above generator, we can obtain a generator of the

Wy Wy Wy W, ] [ Wi A /] ~Wj -Wy
=
4

pseudo-inverse of T of length 4.

§. Concluding Remarks.

We have presented a constructive approach to the famous Gohberg-Semencul formula for
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the inverse of a Toeplitz matrix, and obtained various generalizations of it. We note that for-
mulas of Gohberg and Semencul type are closely related to the problem of finding displace-

ment representations (generators) of various matrices.

For further development, we may mention that the procedure for 2 x 2 block matrices
given in Sec 3 can be easily generalized to N x N block matrices. For instance, by considering
3 x 3 block matrices, one can obtain a generator of [A;; ~ AJ,ATIA 57, As an example,

we can obtain a generator of (T]T3'T;)™ by working with the matrix

A Ap T, Ty o
A= A‘TJ_ O ’ A]’] = TlT 0 » Al'z = ) { .
The length of the obtained generator will be 4. As another example, a generator of T/ T,T,

can be obtained by choosing

e[ o) wee[2]

We also remark that divide-and-conquer versions of the procedure in Sec 3 can be readily
obtained {3]. By using this approach to compute the displacement representation of an?,
one can, for instance, obtain least-squares solutions for Toeplitz systems in O (mlog?m) opera-
tions.

There exists an interesting relationship between the reflection coefficients of a Toeplitz

matrix T and those of T~ [15). A constructive proof of this relationship can be found in [2].

Finally, we should note that several authors have explored the problem of fast inversion
of various structured matrices by employing somewhat different, but related, definitions of dis-
placement. We may mention the work of Heinig and Rost [12], Gohberg et af [9], [10], L.
Lerer and M. Tismenetsky [17]. Some of the formulas therein are also generalizations of the
Gohberg-Semencul formula. More work needs to be done to clarify the relationships between

these different results and approaches.
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APPENDIX

Lemma Al. Let T be a symmetric Toeplitz matrix. Then the {X;} defined by the construction

in Sec 2 will be less than one in magnitude if and only if T is positive-definite.

Proof. If Ix;|1 <1 for all 1 <i < n-1, then we can complete the transformation to get the
matrix A in (11), and T = LL7. Hence, T is positive-definite. Now, let us assume that T is
positive definite, and Ix;| < 1 for 1 < j <i-1. After the (i—1)st sweep, the upper-half, aY,

of the matrix A;_, has the form,

AO 00
s-|s 2O o) ater o

where A is a nonsingular lower triangular matrix, and C, D are lower triangular Toeplitz. Let
¢ and d denote *he diagonal elements of C and D, respectively. Suppose that Ic| < |21, and

therefore, |x;| 2 1. Then T cannot be positive-definite, because

lmm(T) < SrAiqlJ[Ailll]TS = C2 - dz <0,
where

sT =(-bJA 1, ef], ef=(1,0,--,0], bl = the first ow of B,
which leads to a contradiction. 0O
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Chapter 4.

Displacement Structure for Hankel, Vandermonde and
Related (Derived) Matrices

Abstract

We introduce some generalized concepts of displacement structure for structured matrices
obtained as products and inverses of Toeplitz, Hankel and Vandermonde matrices. The Toe-
plitz case has already been studied at some length, and the corresponding matrices have been
called near-Toeplitz or Toeplitz-like or Toeplitz-derived. In this chapter, we shall focus mainly
on Hankel- and Vandermonde-like matrices and in particular show how the appropriately
defined displacement structure yields fast triangular and orthogorl factorization algorithms for

such matrices.
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1. Introduction.

Many signal processing problems require solving large systems of linear equations, either
directly or via (weighted) least squares. The basic solution tools are triangular factorization
and QR factorization. These factorizations require O(n®) or O(mn?) flops (floating point
operations) for an m x n matrix, which can often be excessively large. Therefore, attention
focuses on structured matrices, with an eye both to computational reductions and to implemen-
tability in special purpose (parallel) hardware. Structured matrices arise in various problems in
coding theory, interpolation, control, signal processing and system theory.

Very common examples of structured matrices in the above areas are Toeplitz, Hankel
and Vandermonde matrices:

to ta - loan
reap=| L 0T erem M
bn-l tm=2 * lepam

ho hy - - hyy

hy hy - h,
H=Mh,2=| . . .. . |eR¥, 7))

host By - - hoay

N S
—_— JK—
VeV(KX)= . e R*™, 3)
— k1 —
K =diag(ky, ka, - -, k), k; 20, c=[1,1,--,1]T.

These matrices have centain shift invariant properties: The (infinite) Toeplitz matrices are diag-
onally shift-invariant, Hankel matrices are "reverse diagonally” shift-invariant, and Vander-

monde matrices are vertically shift-invariant apart from X.
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However, it is easy to see that, for example, Toeplitz structure is not invariant under vari-
ous frequently occurring operations such as multiplication, inversion, triangular and orthogonal
factorization. What is often invariant is a suitably defined notion called the displacemens rank.
For example, let

VA =A -Z,AZ], A e R", @
where Z, is the n X n lower-shift matrix with ones on the first subdiagonal and zeros every-
where else, and define the displacement rank of A by rank(VA). Then it can be shown that a
Toeplitz matrix T and its inverse T~ have the same displacement rank,

rank(VT) = rank (VT = 2. (53)
Moreover if T is Hermitian, then

inertia(VT) = inertia(VT ™). (5b)

Displacement structure as just defined has by now been studied in some detail (see [12]
for a recent survey, and also [13], [17]), with many results for closely related definitions in [8]

and {10} among others.

In this chapter, we shall briefly study an extended form of (4),

Vs poyA A — F/AF'T, ©
and especially another definition
Aps pofh @ FIA - AF'T, )]

where the matrices (F/, F®} can be fairly general subject to certain restrictions described in
Sec 2.

For reasons that will soon appear we shall call the matrices V(,,., A and Ay payA the
Toeplitz displacement, and the Hankel displacement of A with respect to displacement opera-
tors (F/, F®). The rank of V(F,F.,A will be called the Toeplitz displacement rank of A
(with respect to (F/, F*}), and denoted as @z, ssA. The rank of Ay paA will be called

the Hankel displacement rank of A and denoted as Byr psA -
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We shall say, roughly, that a matrix is "structured” (e.g., "close-to-Toeplitz" or "close-to-
Hankel"), it the matrix has a displacement rank (with respect to some {F/, F®}), independent
of the size of matrix. The interesting fact, which enables fast algorithms for triangular and
orthogonal matrix factorization and matrix inversion, is that such structure is inherited under
inversion, multiplication and Schur complementation. This chapter will demonstrate this fact

for various types of structured matrices.

First in Sec 2, we establish the claims just made about inversion, etc. Based on these
results, we present a general factorization algorithm in Sec 3, which will be further specialized
in later sections. Thus in Sec 4, we shall show how to compute the triangular factorization of
Vandermonde matrices. Triangular factorizations of close-to-Hankel matrices will be presented
in Sec 5, and QR factorizations of Vandermonde matrices in Sec 6. References to prior work
on each of these applications can be found in the corresponding sections. This chapter comple-
ments our recent work on Toeplitz and close-to-Toeplitz matrices (see Chapter 2 or {5]). On a

first reading, readers can skip all "Remarks" in this chapter without loss of continuity.

2. Some General Properties of Displacement Operators.

In this section, we shall examine useful choices for the displacement operators (F/, F®)
in the general definitions (6)-(7), and derive some results on Schur complements that will allow

us to easily study the displacement structure of matrix products and inverses.

One of the criteria for choosing displacement operators is to make the corresponding dis-
placement ranks of A as small as possible, because as will be seen presently the displacement
rank determines the complexity of various operations on A. The special structures in the
matrices (1)-(3), and the results (5) natrally suggest the shift matrix Z, as an important candi-
date. In fact, for a Toeplitz matrix T € R™*, a Hankel matrix H € R*™ and a Vandermonde

matrix V = V(c,K) € RV*, we can readily see that




s — . ————

to Y - - ey

Vaz T =T -ZuTZT=| Q has rank 2, (82)

=Z,H -HZT = | h, has rank 2, (8b)
Az, z H

Ag xV =2,V - VK™ = O has rank 1. (8c)

L |
But how about non-Toeplitz, non-Hankel or non-Vandermonde matrices, but ones that are

known to be the inverses of some Toeplitz, Hankel or Vandermonde matrices, respectively?
The following lemma indicates that these matrices also have displacement structure, a fact first

noted in [13] for Toeplitz matrices.

Lemma 2.1 Displacement rank of Inverses. For any nonsingular matrix A,

%pr g = Cpur pr AT Bier pryA = B prr A
Proof.

pr poyA = rank((A—F/ AF*T)A™") = rank (I-F/ AF*TA),
Opir prA”! = rank [(A™'-F*TA'F/)A) = rank [I-F*TAT'F/ A].

But the nonzero eigenvalues of (F/AXF*TA~Y) and (F*TA-'XF/A) are identical. Therefore,
Birsr oA = rank(F/ A-AF*T)A™) = rank (F/ -AF*T A7),

Bt prrA™" = rank[A(F*T A-A"'FY)) = rank (AF*TA™'-F/),
and therefore, B, oA =B o )A-l' a
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In particular, we see immediately from Lemma 2.1 and (8) that

rank{T™' - ZIT7'Z, 1 = rank(T - 2,121 = 2, 9a)
rank(ZTH™' = H™'Z,) = rank(Z,H - HZ] = 2, (9b)
rank[K7'V7' - v7IZ 1 = rank(Z,V - VK '] = 1. S¢c)

Similar results can be obtained for matrix products. However, it will be useful to first
consider the displacement properties of the so-called matrix Schur complements. The forma-
tion of Schur compiements is the heart of triangularization procedures for matrices. Moreover
we shall see that working with Schur complements of appropriately defined block matrices
leads immediately to results on the displacement structure of matrix products (and inverses).

The following lemma generalizes a result first given in [19].

Lemma 2.2 Displacement rank of Schur complements. Let § € R™>®~) pe the Schur
complement of A € R inM € R™*  ie., let

A B 00 oo = » )
Ms cpl S= 035 € R™*, §=D -CA™B, A:nonsingular.

IfF/ € R™™ and F® € R™* are block lower triangular matrices, i.c.,

F{ o F® o N N
Fl = F{ F{ | Fb = Fb F{ e R, Fbe R™, (10)
then
s poS = Opg e S s oM, (11a)
Bier 528 = Beg 1S S Ber oM. (11b)

Proof. It is not hard to check that M~} has the form
| ] *
M = » S\_l .
Therefore,

Xt poM = o M~ 2 Oy o S = ey g4y = e S (122)
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Beer poM = Biosr prrM ™ 2 Bipir prS™ = Beg piyS = Beer oS- (12b)
where the first and third equalities in (12a) and (12b) follow from Lemma 2.1. The second

inequalities follow from the block lower triangularity of F/ and F®, and from the fact that a

submatrix has smaller rank than the matrix. O

Remark 2.1. Without the triangularity assumption on F/ and F®, the Schur complements
may have larger displacement rank than the matrix itself. See Remark 2.4 below.
Applications.

Judicious use of Schur compiements will allow us to easily derive the displacement pro-
perties of matrix inverses and matrix products. For example, we could altematively have

obtained the results in (9) as follows. Consider the (extended) matrices

T 1 H I VI
Ml;[l 0:', Mzs[' 0]‘ M3’[l 0], (13a)

and define the displacement operators

zT o z, 0 z, O , |kt o
Fl! 0 ZI ’ le 0 Z.T N F;I 0 K_l N F:i 0 ZI . (13b)

Then by using Lemma 2.2 one can check that

Ogr T = g, s M1 =2, (130)
BarznH ™ =B rM2=2, (13d)
Bu-1znV ™" = B pyMs=1. (13¢)

Lemma 2.2 is also useful in determining the displacement ranks of products of matrices.

For example, let

wr [ o) #=[5 2]

Then -T7T is the Schur complement of I in M, and therefore,

O p My =4 = ag 7T, (143)
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Similarly, let

I H Z, O
M=y o) F=lo 27|

Then, we can see that H7 H has low Hankel displacement with respect to {ZI ' Zf } (instead of

{Z,, Z, }) because

B rM2=4=PgrnH H. (14b)

Finally, for the product of Vandermonde matrices, consider the matrix
k' o ]

RER4
Mi=ly of F=l o z

Then we can see that VV7 has rank-2 Hankel displacement

BerrMy=2=Pg,zVV'. (14¢)
This is not surprising because vwvT is, in fact, a Hankel matrix. Also some experiments will

show that VTV does not seem to have a low-displacement rank with respect to "simple” dis-

placement operators.

Remark 2.2. Referring to the result in (14b), we may note that not H TH, but rather HTIH,
where [ is the reverse-identity (ones on the antidiagonal) matrix has low Hankel displacement
rank with respect to the usual Hankel displacement operators {Z,, Z, }. To see this consider

the following matrix M, and displacement operator;
I H z, 0
M2 = HT ol F= 0 Zn . (15)

B M2 =4 =Pg, z)H' IH.

Then

Remark 2.3. By considering 3 x 3 or higher order block matrices, one can determine the dis-
placement rank of other composite matrices. For instance, the matrix J(H —HH{'H)™'I,

where H; is a Hankel matrix, has Hankel displacement rank 4 with respect to {F, F ), where
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zZ, 0 0
Fsi0 2, O
0 0 Z,

Remark 2.4. One might have noticed that the Hankel matrix H also has a low Toeplitz dis-
placement rank, viz, that

Ve, zfl =H - Z,HZ,, ag ;nH =2.
The only difficulty of using this displacement in the context of the fast algorithm in Sec 3, is
that the displacement operator Z7 is not a block lower triangular matrix. Therefore, the Schur
complements of H can have larger displacement ranks than that of H. With a slight
modification of Lemma 2.2, one can show that all Schur complements of a Hankel matrix with

respect to this displacement operator have rank 3.

Remark 2.5. A displacement of a matrix A can characterize the matrix A if we can solve the
equations (6) and (7) for A uniquely (the equations (6) and (7) are necessarily consistent in our
context). It is well known that the (consistent) equation (6) uniquely determines the solution
A, regardless of what the displacement operators {F/, F®} are. However, the (consistent)
equation (7) has non-unique solutions (see, e.g., {11], [15]) if (and only if) there exists a pair
of eigenvalues A;(F/) and A;(F®) such that

LEDH-LEFED=0. (16)
This condition holds for most of the displacement operators for close-to-Hankel matrices that
we are interested in, which is unfortunate because we are concemed how to find L and U such
that A = LU (in a fast way), given only the displacement of A. We shall circumvent this

non-uniqueness problem by imposing an additional constraint (see Sec 3).

3. Fast Partial Triangular Factorization using Hankel Generators.

In the rest of this chapter, we shall only consider Hankel displacement structure.
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Corresponding results on Toeplitz displacement can be found in [5]. Also it is important to
mention at this point that we consider only strongly nonsingular matrices for triangular factori-

zation, and full column rank matrices for QR factorization.

General Schur Reduction.

We note (see, e.g., [9), also (5], [17], [18], [23], [24]) that the standard triangular factori-
zation procedure can be regarded as arising from the recursive computation of the Schur com-
plements (S;} of the leading principal submatrices of a given matrix. Let
Ao=So=A € RV, and define |; € R™, u; € R™, d; # 0 and the ith reduced marrix A;

recursively by

I r Oii  Oixa—i)
A=l [di[—ui—]+4, A= Owaivi  S; (172)
U
Given A;_,, we can determine the quantities in (17a) as
L=Ae, w=Ale, d=URL) =), (17b)

where e; is the unit vector with one at the ith position and zero’s elsewhere, and [v]; denotes
the ith element of the vector v. The computation of the reduced matrix A; from A;_; will be
called (one step) Schur reduction [9], [17). Using r Schur reduction steps, we can obtain the

(r-step) partial triangular factorization,

A=Yhdul +A, 18

=]

,\ d] --——l.llr—’ OO
=y .. N '
ll l.r d. \urr-_ + O S,

u LDUT + A,.
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The "trapezoid" matrices L, U and the diagonal matrix D will be called (r-step) partial tri-

angular factors of A. Notice that r Schur reduction steps take O (rn?) flops.

. Schur Reduction using Hankel Displacements.

The displacement rank of a matrix A can be much smaller than the rank of the matrix A

itself. Also if the chosen displacement operators {F/, F®} for a given matrix A € R**
‘ satisfy the condition in Lemma 2.2 for all 1 S i Sr, viz, that

the r x r leading principal submatrices of F/ and F® are lower triangular,  (19a)
or pictorially,

O

F = (19b)

then the displacement ranks of the reduced matrices (A;: 0 € { < r) do not increase:

B(F'.F')Al' S B(F,J,.)A,-_l. 1sisr. 20)
Note that Agr oo is determined only by O(fn) parameters, whereas the matrix A; itself
needs O (n?) parameters. Therefore, we can hope that the Schur reduction procedure in (17)
can be done more efficiently with O (rBr) flops (instead of O (rn?) flops) if we successively
compute A(F,J,..)A,- rather than A;. This is indeed the case as we shall see shortly. For the
rest of this chapter, we shall restrict ourselves only to displacement operators that have the
form (19), because (20) is a nice property to have.

Recalling the definition of displacement,

Apt poyi-r = F/ Ay~ A F*T,  F/ and F* have the form (19),

1 we can check that
(Bgr poiale; = (Ff A=A F*Tye; = F/F* ) 0N, @12
[Ags poi-a)T € = -FP AL +AL F/TYe; = «(F* —{F/ ), i, @1b)

where [F]; ; denotes the ({,/)th element of F. Therefore, |; and u; can be obtained by
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i = FIF" 2 D) Bipr priciless u; = ~FO—AF i DY Ay o piaV 0 (22)
where the superscript # denotes an appropriate generalized inverse. After determining |;, u;

and d;, we can obtain the displacement of the reduced matrix A; as

Aer proi = FI A - AF*T @3a)
=F/ A - A_F*T < F/\diul + LduTFYT (23b)
= Apr prfic = FAdiu] + Lida[FHT. (23¢)

If (F/~{F®); ;1) and (F®~[F/;;I) are singular, then there are many I;’s and u;'s that

would satisfy (21). Let us consider separately the nonsingular and singular cases.

A. Nonsingular cases.
If (F/~{F*); ;1) and (F®~{F/]; 1) are nonsingular, i.e., if [F®];; and [F/);; are not
eigenvalues of F/ and F®, respectively, then I;, u; and d; and therefore A; will be determined

uniquely by taking the ordinary inverse in (22).

Example 3.1. Let F/ =Z, and F® =K. These displacement operators are useful for the
Vandermonde matrix V = V(c.K) € R®® because they give the smallest displacement rank.

Note that (Z,~{K™); ;1) and (K™'—{Z,); ;1) = K™ are nonsingular for 1 S i S n.

B. Singular cases.

If (F/~{F®); ;1) andfor (F®~{F/); 1) are singular then the Schur reduction using (22)
and (23) is ambiguous. Note that we are not completely free in choosing F/ and F®, because
the structure of a given matrix dictates appropriate F/ and F* that give the smallest displace-
ment rank. Instead, we shall overcome this difficulty by using the following two approaches.
The key observation behind these approaches is the fact that only the projection of I; and u;
lying in kernel(F/ <{F®}; ;1) and kernel(F®—{F/}; ;1) are not uniquely determined.

If we have additional information about such ambiguous components of I; and u;, then

we can determine |; and u; correctly. We shall use this approach for the triangularization of
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! the inverse of Vandermonde matrices in Sec 4.

The other approach is to extend the matrix A € R 10 a larger one, say A e R™",
such that A is a leading principal submatrix of A. Let L € R™* and U € R™™ be n-siep
partial triangular factors of A. Displacement operators F/ and F® for A are chosen such that
the following is true,

L\ kernel(Ff—{F®);;1) and TT | kernel(F*—(F/); ), (02))
where A_LB denotes ATB = 0. Now, we can perform n-step partial triangularization of A
using (22) and (23) unambiguously, because we can compute T; (the ith column of L) and U;
(the ith column of ¥ T) by taking the Moore-Penrose inverse (pseudo-inverse) in (22). After
finding the n-step partial triangular factors of A € R™*, we can obtain the triangular fac-

tors L and U of A simply by deleting the m — n rows of L and U .

Example 3.2. Let H € R* be a Hankel matrix in (2). For Hankel matrices, the (desirable)
displacement operators are {Z,,Z,). Note that (Z,—Z,); ;I) = Z, is singular. However, if

we define

o' o
then B, z,, /1 is still small (in fact, 4), and partial triangular factors of H, and the dis-

i = [ . 0] € RO+, (253)

placement operators (Zy,1, Zy 4y} satisfy (24).

Example 3.3. Let H € RV* be a Hankel matrix in (2). Define

20528
U R o ] € R ] (25b)
where Up is the "reverse upper triangular" Hankel matrix (with zero elements in the lower-

right corner) such that H, is Hankel. As an example, for a 3 x 3 Hankel matrix, Up has the

form,
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ho hy hy hy hy O
H= hlhzhg, UR= h40
hy h3 hg 0

Now the partial triangular factors of H, and the displacement operators (Z3,, Z,,} satisfy

(24).

Generators of Matrices.
For a given matrix A € R™*, any matrix pair, (X, Y} such that
AprpA =XYT, Xa(xX,%,...%]e R™® Y=(y,y,...y5]e RV®
is called a (Hankel) generator of A with respect to {F/, F®) . The numbers B are called the
length of the generator (with respect to {F/, F®}). A generator with respect to {F/, F®)
with its length equal to the displacement rank is called a minimal generator (with respect to

{(F/,Fb)).

Example 3.2 (continued). Generator of H. The matrix H, in (25a) has the displacement,

( 0 <ho : =hy2 —hyy

SO
".-2 "th-z
hasy by - hpep O

and therefore has a generator, (X,, Y,}, where

Aq, .z, =

J

10 0 0 o o0 o01]
- —h, ho -ho h, -
xl- . . . Yl= . N R (26a)
© 0 <hay Bz 0 -
01 0 A et O 10

Example 3.3 (continued). Generator of //,. The matrix H, in (25b) has the displacemen,
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[ o —hg - - ‘hh-z.
ho
Az, z, = ' ,
.hz'"-2 o

and therefore has a generator, (X, Y,}, where

10-- 0 |" 0"‘0""’2&-2“
X2=10 hg - - hpa|* 2=[1 0 -+ 0 |- (26b)

Fast Schur Reduction using Hankel Generators.

Now, let

A(F[Fb)Ai_l = X¢-Dy@-nr,
Notice that the matrix products involving A(,,., f.)A,-_l in (22) can be done more efficiently as

(Bes proyhiaile; = XEDY )L (Apr i) = (YENXET ey, 272)
where matrix-vector products are performed in the sequence as shown with the square-brackets.
Furthermore, a generator of A; can be obtained as

XO =[x, _Flyd;, 1,4, YO =[r¢D, u, FPuy), (270)
because of (23c). Although the generator given in (27b) is not minimal, it is possible to delete
the two redundant columns in X and Y% in (27b) in an efficient way [16].

However, the above Schur reduction procedure is still not efficient, because of the matrix
inversions required in (22), and the matrix-vector multiplications F/1; and F®u; in (27b).
Nevertheless, for structured matrices A (e.g., Hankel, block-Hankel, Hankel-block, Vander-
monde etc), displacement operators, F/ and F® are extremely simple so that such operations

are trivial.

4. Fast Triangular Factorization of Vandermonde Matrices.

The problem of finding the coefficients of the nth degree interpolating polynomial can be
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formulated as a problem of solving an (n+1) x (n+1) Vandermonde matrix equation. Bjorck
and Pereyra first noted (2] that the divided-difference scheme (which needs O (n?) flops) for
finding Newton’s form of the interpolating polynomials, in fact, solves the Vandermonde matrix
equations. They also presented an algorithm that needs O(n?) flops for the factorization
v-! = UL, along with other extensions. Recently, Gohberg, Kailath and Koltracht [8) obtained
the algorithm of Bjorck and Pereyra by a different route and gave different extensions. In this
section, we shall present two fast algorithms for computing the factorizations V = LU as well

as V-! = UL. We believe that our approach is more fundamental and provides richer insight.

Consider the Vandermonde matrix

_ T —
_ K —
V=V(cK)= . e R*, (28a)
_— cTKll—l__
where
K =diag(kp, kp - ky), © =[1,1,--,1]. (28b)
Note that
By gV =xO5OT, x@ze e R™, yP=-—Klce R (29)

Therefore, V has a generator {x®, y?) of length 1. Now the Schur reduction steps special-

ized for Vandermonde matrices can be summarized in the following theorem.

Theorem 4.1, Let A Vi_y = xUDyC=DT Thep

Z, k)
L = ka2, D, (30a)
u; = -KyE-xl-DTe, = _g[xl-D), y6-D), (30b)
d; = VI, (30¢)

< = [ Iy xV - g Z, 1 + (il ];+|Ik;,,)l,-] ;i 01 (31a)
’(i) = [x(i-l)]'_ﬂ’(i-l) - d;[;1;u; + d;fk; ].'+|K-lu‘. G1b)




————-——-—1
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Proof. (30) follows immediately from (22). From (27b), we have

XOyOT o GO0 _ 7 L dul + 1,du]K (32)
The matrix X©Y¢)T, which is the displacement of the ith reduced matrix, has the null rows

and columns from 1 to i. Because it is a rank-one matrix, a minimal generator of Xy
can be obtained simply by taking the (i+1)st row and the (i+1)st column with an appropriate
normalization;

x0 = xOr e, xM;y,  y9 = rOxe,,. (33)

The generator {x®), y®)} in (31) follows from (33), after inserting (32) for X“Y©OT, O

Now we shall summarize the algorithm.

E Algorithm 4.1, Fast Triangular Factorization of a Vandermonde Matrix
| Input: A generator {x@, y@} in (29) of V = V;
Outpue: Triangular factorization, V = LU ;
for i :=1to n do begin
Compute I;, u;, d; using (30); /* O(n) flops (see Remark 4.1 below) */
Obtain a generator of V; using (31); /™ O(n) flops */
end
! L=ul -, L Ul =(u,w- v} D =diagd,dy--,d,);

return ({L, U, D});

Remark 4.1. The matrix-vector multiplication, p = (/—;Z,)"'x¢~" in (30a) needs only O (n)
flops, because it is essentially the back-substitution procedure solving the bi-diagonal system,

(—4Z,)p = xtD,

Remark 4.2. The above algorithm can be applied to any matrix V of the form (28a) with an
arbitrary lower triangular matrix X and any vector ¢ (rather than the ¢ in (28b)). However, for

such cases the algorithm may take greater than O (n2) flops.




-95.
Triangularization of the inverse of Vandermonde Matrices.

Consider the matrix,

vV I
ME[I 0]. V e R*™, 34)

and its partial triangularization:

Ly 0o
M= U, D[U|L2]+ o sl (35)

where U, and L] are necessarily upper-triangular because M is banded. We .an see that

vl=U,DL,, (56a)

because

V=L,DU,, I=UDUy, I=L,DL,. (36b)
Therefore, we can obtain the factorization V! = U 2DL, by the n-step partial-triangularization
of the matrix M using the fast Schur reduction. To do so, we first need to find a generator of
M with respect to appropriate displacement operators. Our choices of displacement operators

are

ot zZ, O b K' o
“lo ktyp "1 o cf

’ (373)
where C, is the circular shift-down matrix, i.e.,
0 1
10
C, = \\ e R¥*, (37b)
10
Note that Az oM = xOyOT where
x(0)=el o Ranl' y(0)= [_cTK-l' _e:']T € R?Jlxl’ e, € R.Xl. (38)

Note that F/ and F® in (37a) have the form in (19). Also (F®—{F/); ;) is nonsingular
for 1 <{ <n, and therefore, u; can be obtained by taking the ordinary inverse in (22). How-

ever, (F/~{F®]; ;) is singular for 1 €i < n, and
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z
kernel(F/ - [F"],.,;l)=span[e. ] ze R, ¢ e R, 1<i<n, (39)
4
where z is the null-vector, i.e., [z}, =0 for all i. Therefore, if we take the pseudo-inverse in
(22) for I;, then only the element [I;],,; is not determined. However, note that this element

[1;1,+ can be determined by other means. Namely,

i Jnsi = 1/(d;-[u;])),
because U, = (DU )"} from (36b).

Remark 43. The reason of using the F b in (37a) rather than F 5’ in (13b) is to make
Fb—(F/ J; ;1 be nonsingular, We cannot, however, use C, in the place of Z, for F/, because

the resulting F/ would not have the form (19).

Now we shall summarize the n-step partial triangularization with the following theorem.

The proof is similar to that for Theorem 4.1, and we shall omit it.

Theorem 4.2. Let A gy poMiy = x¢"y¢ T where Mo=M and F/, F® are as in (34) and

(37a), respectively. Then

u; = ~(FP—[F/ ), 1)y x0T e, (40a)
L= (FF—(FP) ;1) Dy6 e, 4 e, i(di- ;1) (400)
d; = VL1, (40c)

where A* denotes the pseudo-inverse of A. Also, &gy ppM; = xOyOT where

x® = [ YO hinxY = di (i) n FIL + il 1.-+./k.~+.)l.-]/[x("1,-+n. (412)
¥ = x5y - di g + 4Pl (41b)
Note that the computations of (40) take only O (n) flops because

K O
-]_
FE-Fu =g ¢ |
-k, (I-k;Z,)"' © .
FI-{F?) 1) = 0 KO |+ KO =K except(K];; =0,
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We shall summarize the algorithm.

Algorithm 4.2. Fast Triangular Factorization of V1.
Input: A generator (x©, y©@} in (38) of M = My € R
Output: Triangular factorization, V~! = UL;
for i := 1 to n do begin
Compute I;, u;, d; using (40); /* O(n) flops */
Obtain a generator of V; using (41); /* O(n) flops */
end
L=(pl -, L, Ul =(u,uy -,u,]; D =dag(d,dy -.dy )

return (D and the bottom halfs of L, UT);

5. Fast Triangular Factorization of close-to-Hankel Matrices.

In this section, we shall only consider strictly lower triangular displacement operators F/
and F®, i.., those with zeros on the main diagonal. It will be seen that the use of such dis-
placement operators greatly simplifies finding minimal generators of Schur complements. Such

displacement operators can be used for Hankel, Hankel block and block Hankel matrices.

Berlekamp [1], [19] (see also [3], [7]) was perhaps the first to describe a fast O(nz) algo-
rithm (needs inner-product computations) for solving Hankel matrix equations; the closely
related Berlekamp-Massey algorithm [19] is an algorithm of Phillips [21]. Rissanen [22]
extended the results of Phillips to block-Hankel matrices; The Berlekamp-Massey algorithm
involves certain inner-product computations, which is a bottle-neck for parallel evaluation.
Recently, following earlier work of Kung [14] and Citron {7], Lev-Ari and Kailath [18]
presented another fast algorithm that does not need inner-product computation. The results in
this section can be regarded as an extension of the results of Lev-Ari and Kailath 18] w

Hankel-block and block-Hankel matrices. Furthermore, we shall give a fast algorithm for com-




-98 -
puting the triangular factorization of the inverse of Hankel matrices.

Let (X, Y} be a Hankel generator of a matrix with respect to strictly lower triangular dis-
placement operators {F/, F?) that also satisfy the condition (24). (Otherwise, we assume that
the matrix has been extended appropriately such that (24) holds.) We say that 2 Hankel genera-
tor is proper if, for a certain i, all the elements in the ith row of X and above, except for the
clement [X]; ;, are zero, and all elements in the ith row of Y and above, except the element

[Y]); g are zero. Thus a proper generator has the form

3 : i ;
*0—0 0——Q *

X =[xy, -.xgl= ""{" i". Y={y. -.yl= ’I" ’{"i‘ . 42)
-** * L* **.

Before we show how (o convert a non-proper generator to a proper one, we shall summarize
the one-step Schur reduction with the following theorem. Often we shall denote a proper gen-
erator as {X,,, ¥, } for clarity.

Theorem 5.1. Let A s pryhia = X;“')Y,,(i")r, where

X p(i-l) =1 x,("". x{i—l)' - xéi-l) L Y P(i-l) =1 y{i-l). yéi-l)’ e}
Then

L= NED D, u = x{EILEYEY, 4 = 11, 43)
and Ags pri = XOrOT where

XD m (D ixf ), oD, -2, (442
Y© = [yfih, yfi Y, - yf Do Iy ). (40)

Proof. (43) is immediate from (22). Using (43), we have

F/\d; = ["i-l)]‘_ dxf, FPu; = xfM;y (=D,
Therefore, from (27b)

X® = (x0D, (yf D dxfY, 1,d;), YO = (rED, u;, xf Dy “5)



Now, (44) follows from (45). 0O

We can obtain the triangular factorization of close-to-Hankel matrices by applying

Theorem 5.1 repeatedly as described below:

Algorithm 5.1. r-step Partial Triangular Factorization of Close-to-Hankel Matrices.
Input: A generator (X©, Y@} of A = Ay € RV*;
Output: Partial Triangular Factors L € R*” and U e R™*;
for i ;=1 to r do begin
Construct a proper generator of A;_;; /* See below. */
Compute I;, u;, d; using (43);
Obtain a generator of A; by (44);
end
L:=0uly- -, LLE UT ={u,uy--,u} D :=dagdy,dy -.4)

return (L, U, D);

Example 5.1 Hankel matrices. One can use Algorithm 5.1 to find the n-step partial triangu-
larization of the extended matrices in (25) with any of the two generators in (26); both genera-
tors will need the same amount of computation. Triangular factors of Hankel matrices are

obtained from the partial triangular factors of the extended matrices. Also note thatZ* = Z T,

Example 5.2 Block-Hankel matrices. The block Hankel matrix,

By B, - - B,

B, B, - - B,
Hs| . |eR®* p R, (46)

B,y By, -+ By,
has a low-rank displacement with respect to the block shift displacement operator Z%. How-

ever, this displacement operator and the block Hankel matrix (46) do not satisfy (24). We first

add a block of null rows and a block of null columns to (46) to get the extended matrix
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H e ROXOD5 - Note that A also has low displacement rank with respect
(Z8 413+ ZEss1p). One can easily find a generator of H with respect to these displacement
operators. Now, we can find triangular factors of H from the nb -step partial triangular fac-

tors obtained by using the algorithm 5.1.

Example 5.3 Hankel-Block Matrices. Consider the following Hankel-block matrix B and its

extended matrix B,
Hy Hy| _ B O

The matrix B has displacement rank 6 with respect 10 {Z2,41, Z2441)} We can obtain triangu-
lar factors of B from the 2n-step partial triangular factors obtained by using the algorithm

5.1

Example 5.4 Inverse of Hankel Matrices. Let H € R"* be a Hankel matrix. Define the
matrices

H I MDO
22n it
ME[TO}ER 'M’[OTO

where I is the reverse identity (ones on the antidiagonal) matrix. The matrix M is a Hankel-

] € R+t @“"n

block matrix of the form of B in Example 5.3, and the matrix M has displacement rank 4 with
respect 10 (Zy441, Z2441). We use the Algorithm 5.1 to get n-step partial triangular factoriza-
tionof M,

L
! 00
M=|c D[u,001+[0 s]
oT
i Note that

. H'=U,DL,, UymiC, L,nGl,
where U, and L] are upper-triangular, because
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H=LDU, [=cDU, I=L,DG.

Example 5.5 Inverse of Hankel Matrices. Instead of using the extended masrix M in (47),
one can use the following extended matrix,
Hy, 0 I,

A—‘ = OT 0 oT e R(M'H)x(‘l'l-l)' (48)
I, 0 O

where H, is as defined in (25b), and 1,, is the 2n X 2n identity matrix. The matrix M in
(48) has displacement rank 2 with respect to {F, F), where F = Z,, ®Z%,.,. Also one can

check that Ag pyM = XYT, where

T
10-- 0 ol 0 ~hg * - —hgy -1
X=lohy- hpat|*¥Y=|l1 0 - 0 of- 49)
Note that n-step partial triangular factors of M and the displacement operator F satisfy (24).

Therefore, we can use the Algorithm 5.1 to get n-step partial triangular factorization of M,

and obtain triangular factors of H™'.

Construction of Proper Generators.

The basic tool for constructing a proper (Hankel) generator is the use of elimination
matrices E; j(n), defined as the identity except for the element [E; (MWl ; =n. Notice that
E,-j,-‘(n) is also different from the identity, except that [E.-:,-‘(n)],- j=-N. Let{X,Y] be anon-
proper generator of A. Without loss of generality we shall assume that [X); ; # 0. If not, we
can always interchange (implicitly) columns of X and rows of ¥ T 10 obtain such a generator of
A. We can annihilate all elements in the ith row of X except the element [X);; by post-
multiplying with the n~1 elimination matrices pivoting with the element [X]; ,,

X EysM)E x(My) - - ErpMp), Y ETS(ETTMa) - - Eff (p),
where 1, = —{X]; 2/[X]; 1.
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Again assuming that [Y']; g # 0, we can similarly annihilate all elements in the ith row of
Y except the element [Y]; g by post-multiplying with the n—1 elimination matrices;
, Y Ep 1 p(p-0Ep2s0p2) - Erg(), X EghigOi-0Ef2p (-2 - - Eif (Y0
where y, =~[Y];;/[Y]; 3. Note that the last annihilation E,g does not destroy the zero at
(X]; g- This procedure will require 2n elimination matrices, and therefore 28n flops.
’ If a matrix A is symmetric, then the matrix Ag ryA = XY is skew symmetric, and there-
fore, has the same number of positive and negative eigenvalues. Hence the symmetric dis-

placement has the form

. 0 -
where 7 is the § x & reverse identity matrix (Check the generators (26a) and (26b)). We call
the generator (X, XPT} skew symmegric. With a skew symmetric generator {X, XPT} note
that we only need to apply
X E\2(MDE 3(M3) - - E 1 g(Np),
to obtain a proper generator. Also, we only need to compute I; in (43) and X in (44a), and

Algorithm 5.1 will give the Cholesky factorization A = LDLT.

Remark S.1. Algorithm 5.1 for finding the Cholesky factorization of the symmetric Hankel
matrix in (2) by using the generator (26b) (choosing altemative pivoting elements) is identical
to the Euclidean algorithm for finding
GCD(P(x), q(x)), px)Mhx® 24+ hoy3x +hgey qx) mx¥L,

We encourage readers to check this equivalence by using the 3 x 3 Hankel matrix,

§32
321}

214
Remark 5.2. Algorithm 5.1 reduces to the algorithm of Sugiyama ez. al. [24] if we use the

H =

generator (49) to find the triangular factorization of the inverse of Hankel matrix. Also the
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O (nlog’n) algorithm of Brent ez. al. [4] (see also [6]) for solving Toeplitz system of equations
is closely related to the divide-and-conquer version of the algorithm by Sugiyama et. al. after
permuting the rows of a Toeplitz matrix to make it Hankel. Furthermore, Berlekamp-Massey
algorithm can be regarded as the "Levinson version" of the above procedure, so that one can

work with only the bottom part of the algorithm applied to (49) (see (5]).

6. Fast QR Factorization of Vandermonde Matrices.
We shall show that the Algorithm 5.1 can be used for the QR factorization of the tran-

spose of the Vandermonde matrix,

VIi=(cKe - -, K" c), K =diag(ky, ko - - . ky).
First, notice that the matrix VVT = H is a Hankel matrix,

ke Jdk¥% - JK"c
r k% K% - Tk
W' =H=(h,j2D= ) ) ) ) e R™*,
cTch cTKlI'#lc . cTKZR—lc
Let us define
R IRZ
Mys| e ROHIQrD) (50)
7T o

where /| is as (252) and V] ={ V, K"c]. Note that

BrroM1=4, Fi=Z 0K

Ag r My = XPXT, (S1a)
where
10 - - o o - -0]" -1
o - - 0 1 0 0 -1 "
X=10-h, - sy 0 O ol P=| 1 - G1b)
0 ho « - hey k7 RS - 1

It is easy to check that the displacement operators {F,, F,} and the a-step parial triangular

factors of M, satisfy (24). Therefore, we can use Algorithm 5.1 for the m-step partial
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triangularization of
r
— R 00
M,=|0" [ROQT]+[0 s]- (52)
Q

Comparing (50) and (52), it is easy to see that
wT =RTR, vI=QrR, QTQ =1L
Remark 6.1. Instead of using the matrix M, in (50), one may use the extended matrix

H, 7,

M-2= V-;' 0 € Rhm'

where H, is as in (25b), and

Vis(V.W], Wa=aKk"V
For the matrix M,, one can check that

B(pzfﬁz =2, Fya=2,, @K—l,

A, My = XPXT,
where

10 - - . .- 0 0 -1
X= 0 hy - - hyy k' - - k[ P={1 0]
7. Concluding Remarks.

We introduced some generalized notion of displacement structure and developed some of
their properties. The displacement structures associated with Toeplitz and close-to-Toeplitz
matrices have been the most studied so far, with some new results in [S]. In this chapter we
have focused on Hankel and close-to-Hankel matrices, and presented a general algorithm for
triangular factorization of such matrices and their inverses. This general algorithm was also
extended to obtain the triangular factorizations of Vandermonde and close-to-Vandermonde

matrices and their inverses, and the QR factorizations of Vandermonde matrices and close-to-
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Vandermonde matrices. (The QR factorization of Hankel matrices can be obtained via the QR

factorization algorithm for Toeplitz matrices [5]). Relationships with all earlier algorithms for

these problems have also been noted. We remark that Algorithm 5.1 can be easily imple-

mented as a divide-and-conquer fashion. The approach taken in [6] can be used for this pur-

pose.
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Chapter 5.

Divide-and-Conquer Solutions of Least-Squares Problems for
Matrices with Displacement Structure

Abstract

A divide-and-conquer implementation of a generalized Schur algorithm enables us to
obtain (exact and) least-squares solutions of various block-Toeplitz or Toeplitz-block systems
of equations with O (c’nlog’n) operations, where the displacement rank o is a small constant

(typically between 2 to 4 for scalar near-Toeplitz matrices) independent of the size of matrices.
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1. Introduction.

In recent years, there has been considerable research on fast algorithms for the solution of
linear systems of equations with Toeplitz matrices. The Levinson and Schur algorithms allow
solutions with O (n?) floating point operations (flops) for systems with n x n Toeplitz
matrices.

In 1980. Brent et al [5] described a scheme for obtaining a solution with O(nlogzn)
flops. This was based on two ideas - the use of the Gohberg-Semencul formula [11], [12], [16]
for the inverse of a Toeplitz matrix, and the use of divide-and-conquer (or doubling) techniques

for computing (generators of) the Gohberg-Semencul formula.

Let x and y denote the first and last columns of T~! € R*™*. Then if the first component

of x, say x, is nonzero, Gohberg and Semencul [12] showed that we could write

T = %—[L(X)LT('I',, v) - LEZYLT@Z, %), x #0, M
1

where I, is the reverse-identity matrix, Z, is the shift matrix,

and

L (v) = a lower-triangular Toeplitz matrix with first column v.
The significance of (1) in the present application is that the product of a vector and a lower- or
upper-triangular Toeplitz matrix is equivalent to the convolution of two vectors, which can be

done using O (nlogn) flops (see, e.g. [4]).

Brent et al used a divide-and-conquer scheme for a certain Euclidean algorithm to factor-
ize row-permuted Toeplitz matrices (i.e., Hankel matrices), and to obtain the vectors {x, y} of
the Gohberg-Semencul formula with O(n log’n) flops [See [9] for the connection of Brent et

al's approach to other related results). Later Bitmead and Anderson (3] and Morf [20] used
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another approach based on the displacement-rank properties of matrix Schur complements, to
obtain similar results; while this approach allows for generalization to non-Toeplitz matrices,
the hidden coefficient in their proposed O (nlog?n) constructions tumed out to be extremely
large (see Sexton et al [24]). Later Musicus [21], de Hoog [10], Ammar and Gragg [2] used a
more direct approach based on a combination of the Schur and Levinson algorithms to obtain
better coefficients; in particular, Ammar and Gragg made a detailed study and claimed an
operation count of 8nlog?n flops. With this count, the new (called superfast in [2]) method
for solving (exactly determined) Toeplitz systems is faster than the one based on the Levinson
algorithm whenever n > 256. We should mention here that Schur-algorithm-based methods
are natural in the context of transmission-line and layered-earth models, so it is not a surprise
that similar techniques were also conceived in those fields - see Choate [7], McClary [19] and
Bruckstein and Kailath [6]. A good source for background on the Levinson and Schur algo-
rithms, transmission line models, displacement representations as mentioned and used in the

present chapter may be {13].

The method we have taken in this chapter is in the spirit of the generalized Schur algo-
rithm [8]. Our algorithm can be applied to non-Toeplitz matrices, and does not have the draw-
back of the large coefficient in the methods of Bitmead and Anderson (3] or Morf [20]. Furth-
ermore, we can readily handle matrices such as (777)™ and (TTT)™'T7, where T may be a
near-Toeplitz matrix or a rectangular block-Toeplitz matrix, or a Toeplitz-block matrix; in par-
ticular, therefore, we can also obtain the least-squares solutions of over-determined Toeplitz
and near-Toeplitz systems with O (n logzn) flops. Our algorithm is closely related to the algo-
rithm of Musicus [21]). However, our presentation is conceptually much simpler (especially for
the non-Toeplitz cases treated in [21]) than previous approaches; in particular, we do not use

the relationship between the Schur algorithm and Levinson algorithms needed in (2], (10}, [21).

An outline of our approach is the following. For a matrix E,
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Eyy Eyp .
= Ez.‘ Ez'z . E]'l' nonsmgulaf.
the Schur complement of E, ; in E is
S = El.l —Ez']El—'llEl'z.
Notice that matrices such as

$,=T", S,=@TTy', S;=@TTY'17 ¥
can be identified as the Schur complements of the following extended matrices,
T I TTT I T 17
Ev=l_1o| E2=| 4 o BEs=| 4 o 3

Now the matrices E in (3) have the following (generalized) displacement representation, for
suitably chosen matrices {F/, F?},
E= f‘;K(x,-. FHKT(y;, F®),
i=
where K (x;, Ff) and K (y;, F?) are lower triangular matrices whose j columns are (F/)U~Vx;
and (F®)U-Yy,, respectively. The smallest possible number o is called the displacement rank

of E with respect to {F/, F®}. For an example, let T be an m x n scalar Toeplitz matrix,

with m 2 n. Then the matrix E, has displacement rank 4 with respect to (F, F}, where

Z, 0
F = [ 0 z ] and has a displacement representation (14],
n

2 4 I, O
Ey= K@i, FXT(x;, F) - $K@;, F)XT(x;, F), y.--[o -l.]“* ‘)

i=]l i=3

If we define x] = (w/, v7], note that the matrix X (x;, F) in (4a) has the form

L(w;) O
L(V,') 0
where L (w;) and L(v;) are lower triangular Toeplitz matrices with first columns w; and v;.

] e R»& (0 ¢ R*™, (4b)

Given a displacement representation of E, we use a certain generalized Schur algorithm

(see Sec 2) to successively compute displacement representations of the Schur complements of
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all the leading principal submatrices in E. For the above example, n steps of the generalized

! Schur algorithm will yield

o 0 2 4
[ 0 @TTy! ] = ZK @, FKT (. F) - 3K, FXT @ F),
where the top n elements of u; are zero. Therefore, if we denote the bottom n elements of u;
as up;, we can have the displacement representation
T’ry'= _EIL (up LT (uy;) - .-éL (2, )LT (uy)).
i=

Now, the generalized Schur algorithm, which is a two-term polynomial recursion, can be
implemented in a divide-and-conquer fashion with 0(f (n Jogn) flops, where f (n) denotes
the number of operations for the multiplication of two polynomials. Therefore, if the multipli-
cation of two polynomials is done again by divide-and-conquer, i.e., by using fast convolution
algorithms, then the overall computation requires O (nlog?n) flops. We remark that the fac-
tor o can be reduced 10 « if several convolutions can be performed in parallel. Once we have
a displacement representation of the desired Schur complement S, the matrix-vector multiplica-
tion, Sb, can be done with O (anlogn) flops using fast convolutions. As an example, we can
obtain the least squares solution for the Toeplitz system,

Tx=b, TeR™*, m2n
as follows:

(i) Form T7Tb using 2 fast convolutions,

(i) Obtain a displacement representation of (T7T)™! using the divide-and-conquer
version of the generalized Schur algorithm,

(iii) Form (TTT)(TTb) using 8 fast convolutions.

If we had obtained the displacement representation of (T7T)'T7 directly (using E-), then step

(i) above would not be needed.
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2. Generalized Schur Algorithm.

After a brief review of basic concepts and definitions, we shall describe the generalized
Schur algorithm of references [8] and (14], but in a polynomial form important for the divide-

and-conquer implementations. We shall need to recall some definitions and basic properties.

Generators of Matrices.
Let F/ and F? be nilpotent matrices. The matrix

Ver piyA =A = FLAF®T
is called the displacement of A with respect to the displacement operators (F/, Fb}. Define

the (F/, F®)-displacement rank of A as rank[V,,, s,A]. Any matrix pair {X, Y} such that
VerppA=XYT, X =[x, %, ... %] Y3y Y2, Yal ®)
is called a (vector form) generator of A with respect to (Ff, F®). The generator will be said
to have length a. If the length a is equal to the displacement rank of A, we say that the gen-
erator is minimal. A generator such as ¥ = XZ, where I is a diagonal matrix with 1 or -1
along the diagonal, is called a symmetric generator.
The following Lemma [14], [15] establishes the connection between generators and dis-

placement representations.

Lemma. Let £ be an m xn matrix. If F/ and F® are nilpotent, then the equation
a a

VerpnE =3Xxy] has  the unique solution E = YK(x;.F/ XT(y; F®), where
1 1

K(x;, F/ysix;, FIx;, - -, F/®Yx.) and K (y;, F®)uly,, Fy;, - -, F?¢Dy,).

Choice of Displacement Operators.
The generalized Schur algorithm operates with generators, and. needs O (oumn ) flops for
sequential implementation and O (anlog?n) for divide-and-conquer implementation. Therefore,

for a given matrix A, we should try to choose the displacement operators that give the smallest
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o. If the matrix A is an n X n Toeplitz matrix, the appropriate displacement operator F is Z,,

an n x n shift matrix. If A has some near-Toeplitz structure, then F would have forms such

as

n
F=2,0Z, F=@Z, F =28,
e

zZ, O ,.
where ® denotes the direct sum, Z, ®Z,, = [ 0. z ], and ®| denotes the concatenated
m e

direct sum.

Example 1. Let T = (;,_;) be an m x n pre- and post-windowed scalar Toeplitz matrix, i.e.,
;j=0if j>i ori>m —n +j with m >n. Then it is easy to check that the matrix
C =(c-j)=T'T is also a (unwindowed) Toeplitz matrix, and with respect (0

{(Z,®2,,Z,®2Z,]}, E;in (3) has a generator (X, Y} of length 2, where

X = [c()s C1s* "2 Cps _lv 00 Y OITIC(;Q,

x2 = [01 cl' Sty n -l' 00 Y O]T/C(},z'
V1=[C0 C1s "+ Cus Bgn b1 * * tsg» O, - - 0 1T/,
¥2=—0, €10+ Curgu 1" * tmen» O, - - 017 /c4™ a

Example 2. If T is a Toeplitz-block matrix, i.e.,

Ty Ty2 - Ty

Tz'l T2,2 * TZ.N
r=} . . . |eR™* T, =scalarm; x n; Toeplitz matrix,  (6)

Tuy Tua * Tun
then for the matrices E in (3), we choose [8), [14] the following displacement operators

M N

Ey: F/= [‘gz,,,lep,. F® = (‘glz,,,]@t-',. m=n, (7a)
N N

Ey Fl/ = [©Z,]®F . Fb = (®Z,)0F, m=n, (")
N N M

Ey F/ =[@©Z,]0F, F®=10Z,]10(02.] (c)

N
~ where Fy can be either Z, or qzﬁ. However, for the divide-and-conquer implementation, we
't )




s

- 115 -

N
prefer to choose ;elZ,,‘; see the Remark in Sec 4.
i=

Example 3. On the other hand, if the matrix T in (3) is a block-Toeplitz matrix with § x B

blocks,

By B, - Byyg

By By - By,
T=| | o ler™™, B, eRPFE, maMB naNB (8

By, By - Bnem
then for the extended matrices E, we should choose [8] the displacement operators

Ff =zPezB, Fb=2P@zp, ©)
where, for E; we assumed that T is a square » X n matrix.
Generators of the above and other extended block-Toeplitz or Toeplitz-block matrices can

be found in [8] and [14].

Polynomial Form of Generators.

In general, the displacement operators F/ and F® for both extended block-Toeplitz
matrices and extended Toeplitz-block matrices have the form,

N N
F=@z8, na¥n. (10)

i=l i=l
We shall say that the displacement operator F in (10) has N sections. One of the key opera-
tions in generalized Schur algorithms is matrix-vector multiplication, Fv, i.e, a sectioned shift
operation. With the polynomial representation of vectors, the shift operation has a nice alge-
braic expression. For a given vector v, let v(z) denote the polynomial whose coefficient for
the term z° is the i+1st component of the vector, i.c.,

V(Y0 V1o Vs o Vel = V() =g+ viz +vazd 4 v 2L (11)
Then,

Z,vavV =(0, v Vi ', Veal] = v(z)z mod 2"
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In general, for the matrix whose displacement operator is the F in (10), let us define

integers (9;) by

8i=z’lk, 81(82<"<8N.
k=l

Let v(z) and 6(z) be polynomials of degree less than or equal to n—1, and define the degree at
most (n;—1) polynomial, v;(z), by

V(@) =v1(2) + 27 5(2) + 2v3(2) + - + 2PN, (). (12a)
Given two polynomials v(z) and 6(z), and the displacement operator F in (10), the (polyno-
mial form) displacement operator ®r is defined by the following operation,

v(Z)Qr0(z)mr(z) =r (z) + zs‘rz(z) + zs’r3(z) + o+ zs""r,N(z), (12b)

where
ri(z) = v;(2)8(z) mod z™, (12c)
i.e., r;(z) is the polynomial v;(2)8(z®) after chopping off the higher degree terms, so that ;(z)

has the degree at most (n; — 1).

Let

x=[pr2."-qu, Y=[yl!y2v"’ya]
be a generator of a matrix A with respect to certain (F/, F®}, and let

X; = x(z), ¥y 2yi(w).

Then we call the pair of polynomial vectors, (X (z), Y(w)}, where

X(z)m{xy(2), x2(z), - -, Xq(2) ), Y (W) = [y W), y2w), - - . yaW) ]
a (polynomial form) generator of A, with respect to (polynomial from) displacement operator

{Qplo QFU}-

Example 1 (Continued). The matrix E, in (3) has a generator {X(z), Y (w)]} with respect to

(®pr. ®ps), where F/ = 2, ©2,, F* = Z, 2, and
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x(z)=[co+tcyz +--+c,2" - ZH‘]co'm,
xz(z) = [Clz + CZZ oo cuzl - zn+1]co_l,2'
yiw)=lco+cyw +- -+ caw” + 1w + w2 4 - -+ 1, w512,

yaw) =~[cw + - - +cow” +tgw™ + w2 4 41, W™t eg!2,

Also notice that

2

| x(2)Qprz =lcz +c12°+ - - +cpy2" — z"*’]c&"z.

yl(W)QFbW =
=[cow +c Wi+ o+ Cagw® + W2+ W - w2 a
Next we note that for given vectors a and b such that a’b # 0, we can always find [8)
matrices © and ‘¥ such that

a’®=(a,,0,0,--,0], b'¥=[b),00--,0, O¥ =1, (13)
! and therefore, a’b = a,’b,". We define polynomial matrices €(z) and ¥(w) by

1 1
&:z)=6 \ . Yw)=Y \ . (14)
1 1
We remark also that if a = b, then ¥(w) = 8(w), and if b = Za, where Z =/, ®-/,, then

Y(w) = 6(w)Z, so that we only need to find, and post-multiply by, 6(z).

! Generalized Schur Algorithm

Let a matrix E have a generator (Xo(z), Yo(w)} with respect 0 (®gs. ®p2). and

define E; ; by

[51.1 El.z] -

= ’

Eyy Epp | €

where E, | is a k x k strongly nonsingular matrix, i.c., the one with all nonsingular leading

{ submatrices. The k-step generalized Schur algorithm (8], (14] presented below in polynomial

form gives a generator of the matrix,




-118 -

oS
with respect 10 {®zs. @}, O equivalently, a generator of § with respect t0 {®ps, ®ps ).

00
[ ], S 5522—52'15;}512 € R(m—l)!(n-k)’

where 7/ and F® denote the trailing square submatrices of size (m —~ k) and (1 — k) of F/

and F®, respectively.

Algorithm (k -step Generalized Schur Algorithm)
Input: Generator of E, {X(z), Yo(w)}; displacement operator {®,/, @}
Number of steps k.
Output: Generator of S {X,(2), Y, (w))
Procedure GeneralizedSchur
begin
fori :=0to k — 1 do begin
a’ =27 X;(2)),u00
b7 = (270
Find ©,(z) and ¥;(w) to transform a7 and b7 such as (13);
Xin() =Xi(2)®F,8,(z); Y, (w) = Y;(w)®F, ¥i(w)
end
return {X,(z), ¥, (w)}

end

Remark. The polynomial vectors, X;(z) and Y;(w), have degrees m—1 and n-1 respectively,
for all i. Each step eliminates the non-zero lowest degree term, and therefore the terms of

, X;(z) and Y;(w) whose degrees are less than z' and w* are zeros.

By applying the generalized Schur algorithm, one can obtain generators, or equivalently
displacement representations, for various interesting Schur complements.
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3. Divide-and-Conquer Implementation.
The (sequential) k-step generalized Schur algorithm in Sec 2 can also be implemented
efficientdy using divide-and-conquer approach. We shall only explain how to find X,(z);

essentially the same argument applies for Yy (w).

Let us define 8,.,(z) and X,.4(2) by

6,.,(2) = 60,(2)8,,,() - - 6,(2),
X, (@) = X0, (2)®psO0p1(2),  Xoyg(z) 2 Xo(z) mod 299,
where 0 £ p < q. The polynomial matrix 8,.,(z) has a degree g-p+1. The polynomial vec-

tor X,,.,(z) has degree ¢, and is obtained by dropping from X, (z) all terms of degree higher
than z?. Also note the useful properties,
(x(2)®F01(2)1®F0:(2) = x(2)®F(6,(2)82(2)],

[x1(z) + x2(2)1QFO(z) = [x1(2) D 8(z)] + [x2(2)DF B(2)].
These properties and the fact that ©,.,(z) is completely determined by X,,.,(z) allow a divide-

and-conquer implementation of the generalized Schur algorithm.

Given X,.,(z), we can compute 6,.,(z) as follows. If p = g, then we are successful,
and compute 8,.,(z) = 6,(2). Otherwise, we choose an "appropriate” (see Sec 4) division
point r such that p <r < q, and try to solve the smaller sub-problem of finding 6, _1(z).
given X, ,_1(z). Once we know 6,.,-1(z), we can compute X, .4(z) by

X,.4(2) = X4 @) ® 1 O0r1(2) = X 0.4 (2)® 1 O0,p-1(2)1® s Op 1(2) (15a)

= XPW(Z)QFIepii'l(z)' (15b)
Now we again try to find ©,.,(z) given X,., (). After we obtain 6,.,(z), we can combinc the

two results, 8,.,_y(z) and 8,.,(z), by multiplication,
8,,.4(2) = ep:r—l(’)Or:q(z)- (16)
Programming details of the above recursive gemeralized Schur algorithm are shown in the

Appendix.
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The previous recursive description can be visualized nonre .ursively using trees (see Fig 1

and 2). Each node in the tree is annotated with the rules: "find", "apply” and "combine",

fpp : Find 8,.,(2),
Gpg * Xpq(2) =X, (2)BF8p,(2),
Cpiq ¢ Bpg(2) :=6,,_1(2)8,,4(2).
We traverse the tree in post-order (i.e., follow the order labeled on each node of the tree), and

evaluate the rules.

Now, we shall consider two examples in detail.

Example 4. Pseudo-Inverse of pre and post windowed Toeplitz Matrices.

Consider the matrix E4 in Example 1, where

16 8 4 1 3211-10 0 O

ITT < 8 16 8 4 T = 03211 -100
14 8 16 8 | 100321 1 -10

1 4 8 16 0003 2 1 1 -1

It is desired to find a displacement representation of (T T)~'TT. This can be done by the 4-

step recursive generalized Schur algorithm. The input to the algorithm is a generator
{Xo(z), Yo(w)} of
y b o
Ex={ 1 o]
with respect ©0 (®ps ®ps), where F/ =2Z,@2,, F*=2,02,. The output,
(X4(2), Y4w)} is a generator of (TTT)™'TT, with respect to {®z,. ®z_}. The computational

sequence is illustrated in Fig 1, where it is assumed that the division points were chosen suc-

cessively by 2, 1 and 3.

1 0]z
M. foo 90:0(z)=[o —l][ 1] because Xo(z) = (4, 0]

(). a0 X14(2) = X0:1(2)®prOp0(z) = (4 + 22, 22]1® /B0 (2) = [42, -22]
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Co:7
22

€03

12-21
23
4 oo 9

1 2 3 5 6 71 s I
oo amr  fia ao3 H2 a3 3 anr

Fig 1. Sequence of Computations for Example 4.
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€09
coq 13
2412
4 oo ao4 l \
) Cod Pl
a4
7 \
l 2 3 6 8
feo a1 fia f22 faa
fiz aza o
9

Fig 2. Sequence of Computations for Example 3.




3). fix 9“(’):?3' -12 -1 1

2 22 —-z/2
@). Coy- 8O:I(Z) = 90:0(2)91:1(2) = \/_5.. -z/2 1

(). ap3t X23(z) = X3(2)®psOp.(z) = 72_5-[322 + 32312, —z3/4)

10 F4
6). fa2: Ogyuz)= {0 _IH 1] because X,.(z) = \j‘ (322, 0]

D). aga: X3:3(Z)=X2:3(2)®p/92:2(2)=72—3—'[323- 2%/4)

2 | 1 w2
@). faz O33i)= Wias | -2 4 1

12 z z/12
). c23 B23(2) = 8,9(2)034(2) = o=k [ vz 1 H 1]
2 [ 24-2%24 23112-2/12]
VaV143 | —231242112 2212441
(11). aoy: X49(z) = [4+22+2%4+234—2%4, 2z+2%4+2%4-2Y4]® £r60a(2)
= (442242242714, 2z242%42%4) — 24(1/4, 1/4))® £ Bp(2)
=—z 4[(1/4, 1/4)@4.3(z) mod z4]

(10). co3: Bg3(z) = 84,(2)0,4(2) =

& ﬁ4_ —===[2/12-2%24-2%12, 1-2/2-2%124+2%/12)

Because T7T is symmetric, Wo.3(w) = O3(w)Z, where £ = 1@~1, and therefore,

Y 413(W) = (4422 +2%42%4)+2% (31442 242442 Y4),
Qz+2%+2%4y+2 431842 1242 44+2%14-2414)]| @ £+ O3 (W)E
4

= ‘5’ \“‘2_3 (1/42+2224-3237124492124+1125/8+1325124432 712,

~3-2 24248-22%3+1124/8-13/2425-2%/8-27/12).

Therefore,

TTTY'TT = ILOOLT () + LOLT (), Y= —=0r,
(T'T) PILOOLT () + LOLT ), ¥ Ny
where L(x;) and L(y;) are the lower triangular Toeplitz matrices whose first columns are x;

and y;, respectively, and

x; = (0, -1/12, 1724, 12]F,
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x, = (-1, 1/2, 1724, =112,
y, = [0, 1/4, 1724, =372, 49/24, 11/8, 13124, 3/2],
¥z = [-3, =172, 18, =273, 11/8, —13/24, -1/8, 1/12]". a

Remark 1. For a symmetric generator of length 2 with § = 1, the 2 x 2 polynomial matrix

©(z) in (14) can have the form (hyperbolic reflection)

chiz  sh;
’ 6"(2) = —Sh"z -’Chl' N Ch.'2— Shi2= 1.

6,.(z) ©,,(2)
92.1(2 ) e2.2(2)

9,,:4(2) = eP(Z)eP+](z) to eq(z) =

Then, by induction, one can easily prove that

29770 (27 = (-1)TPHO, (), 29527 = (-1)TPO,,(2).

Therefore, we need to compute and store only two entries of 0,,.,(z).

Remark 2. For an unwindowed scalar Toeplitz matrix, the matrix E, in (3) has displacement
rank 4, whereas the matrix E3 has displacement rank 5. Therefore, when we solve Toeplitz
least squares problems, it is more efficient to find a displacement representation of Ty
rather than of (T7T)™'TT. With the notation in (4), the matrix E, for an unwindowed scalar
Toeplitz matrix T = (1;_;) € R™" (m 2 ) has a generator [14],

wy=TTt/lill, wy=t, wy=2Z,ZTw, wy=2Z,l,

ti=toty v tmal, =0ty by g ] IS (g s tmeal

vi=vy=e/liyll, v,=v,=0,

where |I-1| denotes the Euclidean norm, and e, is the vector with 1 in the first position, and

zeros elsewhere.

Example 5. Displacement Representation for the inverse of a Sylvester Matrix.

Let T denote the following Sylvester matrix,
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Nl

Wt
O W~ N
W - O
- N O O

10
21
12 an
11
01

003
and suppose that it is desired to obtain a displacement representation of T~!. Then the

appropriate extended matrix is

T I
Ei=| 4 ol (18)

and it is easy to see that the following (Xo(z), Yo(w)) is a genercror of E, with respect to
(®ps. ®ps}, where F/ = Z5@Zs, F® = 2,002,025

Xo(z) = [x1(2)s x2(2), x3(2)],  Yow) = [y1(W), yo(w), y3(W))

x1(2)=2+2+322 =25, xyz)=1422+22 42328, xy2)=1, (19a)

yiw) =1, yow) = w3, yiw) = w3 (19b)
Now the 5-step recursive generalized Schur algorithm gives a desired generator of T~!, with

respect to {Zs, Zs}, and a possible computational sequence is shown in Fig 2, where the divi-

sion points are chosen successively as 2, 1, 3 and 4.

[z -12 -112] [ w 00
(M. foo Guoz)=|0 1 0 |, Weew)=[wr2 10
[0 0 1 ] w2 01
(). agy: X14(z) =1(22,32/2,-2/2], Y (Ww)=[w,O0,0]
[z 314 -1/4] [ w 00
A) fr: O@)=|0 1 0 |, ¥, ,w)=|3wrs 10
0 0 1 | | -w/4 0 1
(22 —32/4-112 2/4-172 w2 00
@). cort Bgy(2)=| 0 1 0 [, WYow)=|w¥2+3wia 10
) 0 1 winR-wid 0 1

(5). aoa X24(z) = [22%423432%, —5:%14-52%/4, ~52%/4+323/4)
Y2.4W) = Yo.u(W) @ s o1 (W)
= [(1, 0, 0)¥p,;(w) mod w3] + w3{(0, w, 0)¥, (W) mod w?)

= (w23w*/4, w3, 0]

z 5/8 5/8 w 00
- (6). fz;zl 62:2(1)8 01 0 \Pz:z(W) =|-5w/8 10
0 0 1 -5wi/8 0 1
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(T). aggt X3.4(2) = 223424, 5238415248, 112%/8+152718),
Y3.4W) = Y2.4W) @ ps (W)

= (w2, 0, 0)¥,5(w) mod w3+ w(Bw/4, 1, 0)¥s5(w) mod w?)
= [-5w¥8, w3, 0]

0 1 0 ~16w/5 1 0
(8) f3:3: 93:3(Z)= z 16/5 11/5 N ‘Y3:3(W)= w 00

0 0 1 ~-11w/5 0 1
9). a34: Xaa(z) = [-5z%8, 724 62%, Yo4w) = [w?, ~5w¥8, 0]

z2/(2V2)  28/(5V2) 6/5
-5z2/(16¥2) 1/(¥2) -3/4
0 0 1

wi2¥2)  5/(16¥2) 0
W w)=| 28wi5V2) 1(2V2) 0
-12V2w/5 0 1

After evaluating, c3.4, €3.4 and cq.4, We obtain 6y.4(z) and Wy.4(w), and finally

(10). cqqt BOyu(z) =

(14). age: Xog(z) = [x1(2), x2(2), x3(2)1® £r Bp.4(2)
= 2%(-1, -2°, 0)® s 80:4(2)]

= z5[(~1, =23, 00Op4(z) mod 2] = z3[u,(2), ux(z), us(z)),

where

uy(z) = —z/QVN2)-2¥(2V2)+23 N2 + 242

ux(z) = H(5V2) + 4z2V2 + 1624(5V2) — 282%/(5V2) - 28z%(5¥2)

us(z) =25 + z/5 + 2245 + 2315 - 62%/5.

Yoow) = [y1(w), y2w), y3(W)1® s Fo.4(w)
=w{(0, 0, D®psPo.sw)] = w'lv (W), vaw), v3w)l,
where

;_ viw) = =12V2w/5 + 12wH(5V2) + 12wH(5¥2) - 12w¥(5V2),
'[ vo(w) = w2 + w(2V2) + wi(2V2) - w(2V2),
ii viw) =1,
: Therefore,

T = L(u)LT (vy) + L (LT (vp) + L(uy)L7 (vy),
where u; and v; are the vectors whose jth component is the coefficient of z/~! and w/™! of
u;(z) and v;(w), respectively.
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Remark 1. If we had chosen the displacement operator F/ = Zs®Z,0©2,, F® =2,0Z,0Z;
for the matrix T in (17) we would have the same generator (19) for E;, but the obtained gen-
erator of T~! would be the one with respect to {Z3;@®Z,, Zs} rather than with respect to
{Zs, Zg). The displacement ranks of T~! with respect to both displacement operators are 2,

but the above procedure gives non-minimal generators of length 3.

Remark 2, The following extended matrix

-10
also has a displacement rank of 3. One could as well obtain the solution T7'b directly by

TDb
, T = Sylvester matrix (20)

applying the recursive generalized Schur algorithm to (20); the last column of X, where {X, y}
is the computed generator of T~'b with respect to {Z,, 1}, can be shown to be the solution

T 'b.

4. Polynomial Products with Fast Convolutions.

The product of two polynomials of degree d, and d, can be performed efficiently using
d =d+dy+1 point fast cyclic convolution algorithms [4]. Among others, fast Fourier
transformations (FFT’s) can be used for convolutions, and Ammar and Gragg [2] carefully
examined the use of FFT's for a doubling algorithm for square Toeplitz systems of equations.
We shall only consider the subtle complications that arise in the recursive generalized Schur
algorithm in this chapter.

The polynomial matrix-matrix product of (16) needs o of g—p point cyclic convolutions.
The polynomial vector-matrix product of (15b) has o? of scalar polynomial products of the
form, x(2)®p,8(z), where x(z) is a polynomial with nonzero terms of z?, 2°*!, - - , 2. Let

us assume that

0<dj< "<& Sp<d, < <8 Srcd, < -<8,$q<d,;< <.
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Then

x'(z) =2 x(2)Qps6(z) (21a)

= [2201() + 2% @) + - -+ 20x () + -+ 27X @I®p/0z)  (21D)

= (") + - - + 2775, (2)]® £ 0(2) (22a)

+2%[x,,1(2)8(z®) mod z™* (22b)

+ 2%z, 5(2)0(zP) mod 2™ 2¢)

+2%[x,1(2)8(zF) mod z™). (22d)

The terms in (22a) do not need to be computed because these terms will be summed to zeros
after adding all the partial sums in the vector-matrix multiplication of (15b). Recall that x;(z)
has degree n;, and 6(z®) has degree P9~P*V. Therefore, the product x;(z)8(z?) from (22b) to
(22d) can be performed by

2n;+1 point cyclic convolutions if degree(6(zP)] 2 degree(x;(z)] .

n;+B9P*N11 point cyclic convolutions if degree(6(zP)] < degree(x; ()] .

Remark. Notice that two d/2 point convolutions take cdlog(d/2) flops if one d point convolu-
tion takes cdlogd flops. Therefore, the polynomial product (21) is more efficient for the dis-
placement operator F/ with more sections, because such displacement operators break a long
convolution into many smaller convolutions. Therefore, for a given matrix we prefer to choose
a displacement operator with as many sections as possible, while keeping the displacement
rank minimal. Also we remark that the first and last terms (22b) and (22d) need smaller point

convolutions.

If the dimensions of the matrix are powers of 2, then we can always choose the center
division point, » =[(p+q V3. This balanced division (or doubling) gives the least number of
computations, in general. For this case, let n m p—g, and T'(n) denote the number of compu-

tations for one recursion. Then




T() s 2T(W2) + W(n),
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W) = 0 (e’nlogn),

and therefore, one can show [1] that the k-step recursion takes

T (k) < O (a’klog’k).

However, in most cases the doubling is not possible, and for such circumstances, the

desirable choice of r is such that r—p and g—r+1 are highly composite numbers (so that fast

convolution algorithms can be applied efficiently), as well as r is close to (g—p)/2 (so as to

achieve balancing).

Matrix-Vector Products using Displacement Representation.

The final step of finding solutions for linear equations is the matrix-vector multiplication

Sb, given a displacement representation of § € R™*,

S = f;K(x,-, FHYKT(y;, F®),

where the length a is a multiple of the block size f, a = B9, say, and

M
Fl = i?lz"?' ’

Fb = gz” m=§m- n=12v:n-
i=l n." (R4 (

i=]

The expression in (23) can be rewritten in the block displacement form

]
S = TKp(:, FKE(Yi, F®), X; e R™®, ¥, e RV®,

i=]

where

KpX;, F/y=[X;, F/X;, F/’X,, - - F/Im®Xllx, 1 ¢ ™
Kp(Y;, F®) = [Y;, FbY;, F*%Y,, - - Fol0@-ly, 1 e R,
Furthermore, because F/ and F® have M and N sections, respectively, (25a) and (25b) have

the forms

KpX;, F/) =

[ Kp(X,;,28) 0]
Kp(X5;,22) 0

_K,,(x,,,-.z,?,) 0

. Kg(ti, F*) =

[ Kp(r1:.28) O]
Ky(¥2:,28) 0

_Kp(YN.i-Z.?,) 0|

(23)

(249)

(25a)
(25b)
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where K p(X 2 B) is the block lower triangular Toeplitz matrix with the first column block X.
The matrix O denotes a null matrix of appropriate size such that Kg(X;, F/) and Kp(Y;. F)

are m x n and n X n matrices, respectively.

To see how to use convolutions for the product,
Kg(X;, FIKE(Y;, F®)b,
it is enough to consider matrix-vector multiplications of the form Kg(X, Z”)b. Note that
KpX, ZP)b can be expressed as sum of B products of scalar lower triangular Toeplitz matrix

and vectors. As an example,

o 1 1 r T [ T

ag co by ag by Co b,

a ¢ by a; ap 0 €1 Co

a3 ¢3 ag co| |ba| ~ | a2 a1 ag byl | ez 1 co b, (26)
as €3 a; ¢ Lba as a; a; ap | |0 €3 €3 € €| |O

The multiplications in the right sides of (26) can be done by fast convolutions, and therefore,

so can the multiplication Sb.

5. Cncluding Remarks.

We have presented O(o’nlog?n) algorithms for the determination of exact and least
squares solutions of linear systems with matrices having (generalized) displacement rank o
Such algorithms for exact solutions have been studied by several authors, most recently by
Ammar and Gragg (2] for Toeplitz systems. They also made a very close study of the imple-
mentation of the convolution operation in an attempt to obtain the smallest coefficient; we have
not attempted so close an analysis for the more general algorithm in this chapter. Nor have we
attempted a numerical error analysis of the algorithm; nevertheless one might hope that numeri-
cal refinements devised for the Schur algorithm (see €.g., Koltracht and Lancaster [17]) may be

carried over to the divide-and-conquer framework as well.
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APPENDIX
We shall summarize the explanation in Sec 3 using a Pascal-like recursive procedure.
First, note that the polynomial 0,.,() (and ¥, (2)) has g—p+2 terms. The first column of
6, .,(2) has terms ranging from degree z to z?”*!, and the other columns have terms from 1
to 2977, Hence, by shifting the first column by one position, we can store 6,,()and ¥, ,(2)

in the array "Poly" from p to ¢ slots inclusive:

Poly: array [1..a, 1..0, 0..MAX-1] of record
0: coefficients;
y: coefficients

end;

The computation of 6,.,(z) is sequential, i.e., once we compute 6,.,(z), we do not need to
keep 8,.,_1(z), and therefore, the array "Poly” can be kept as a single global variable.
The polynomial vector X,,.,(z) has g-p+1 terms, and therefore, can be stored in an array

type GENERATORS:

type
GENERATORS = array [1..a, 0.MAX-1] of record
x: coefficient;
y: coefficient

end;

However, X,.,(z) cannot be kept as a global variable, and local copies should be maintained

until we compute X, .. (2).

Now we can describe the recursive generalized Schur algorithm as follows.
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Algorithm (Recursive k-step Generalized Schur Algorithm),

Input: Generator of E, {X(z), Yo(w)); displacement operator (®rrr B )
Number of steps, £.
Outpur: Generator of S, (X (2), Yr(w)};
procedure RecursiveSchur
var
G, LowerG: GENERATORS;
begin
Find(0, k-1, G);
Apply(0, k, n, G, LowerG);
return (LowerG)

end

The procedure Find(p, q, G) computes 6, (z), and ¥y (w) given {(Xp.4(2), ¥p (W)}, and

the procedure Apply(p, r, q, G, LowerG) retums LowerG = (X, 4 (2), Y, ,(w)} given G =

[xp:q(z)v Yp:q(w)}

procedure Find(p, q: index; G: GENERATORS);
var
r : index;
G, LowerG: GENERATORS;
begin
if p =g then begin
Compute 8,,(z) and ¥, ,(w);
return

end




-133 -

r := appropriate integer close to [(p +g ¥7;

Find(p. r-1, G);

Apply(p, 1, q, G, LowerG);

Find(r, q, LowerG);

(* Use fast convolution for polynomial products *)
ﬁ 8.4(2) = 8,,.1(2)8, 4 @);

¥, W) =¥, ., (W)Y, ,(w)

end

procedure Apply(p, 1, q: index; G: GENERATORS; var LowerG: GENERATORS);
begin
(* Use fast convolution for polynomial products *)
X, .4(2) =X,.4(@)®10,,1(2);
Yo qW) =Y, W)@ ¥p (W)
LowerG := {X, ,(2), Y, ., (W)}
Free the storage of {X,.,(z), Y,.,W)});
return (LowerG);

end
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Chapter 6.

Concluding Remarks.

After a summary of the main features of our approach to fast algorithms, we shall briefly

note some areas for further investigation.

1. Summary of Results.

We introduced two different displacements of a matrix A € R™* defined as

V(F,,F.)A =A - FIAFbT, (1)

or

Apr poyd =FTA - AFT, @
where F/ and F® are chosen matrices. We call the matrices V g/ 74, and gy ps, the Toeplitz
and Hankel displacements of A with respect to the displacement operators {F/, F®}, respec-
tively. We say that the matrix A is structured if V(F, .F')A has low rank (close-to-Toeplitz) or
A(pf J,..)A has low rank (close-to-Hankel), where "low" is with reference to the dimensions of
A. The ranks of the displacements V ., ;a4 and A g/ rsA are called the displacement ranks
of the matrix A. The computational complexity (as well as the space complexity) of fast algo-
rithms is proportional to the displacement rank of the matrix. Therefore, the displacement

operators should be chosen so that the displacements have ranks as low as possible.
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Invariance of Displacement rank under Schur complementations.

A basic property is the following. Let the block matrix

A B
M=\cp

have Hankel (Toeplitz) displacement rank o with respect to lower triangular displacement

operators, (F/, F®}. Then the matrix,

oS
has the same Hankel (Toeplitz) displacement rank a with respect to (F/, F?}. This result has

00
[ ] S =D —~ CA™'B, the Schur complement of M with respectto A,

many consequences. For example, by considering the matrices

Al 1 A I A
1ol (AT o|" |AT o

we can see that the inverse A~! and the product ATA also have low displacement rank if A

has low displacement rank.

The displacement structure of a matrix is captured by its generators viz., a matrix pair X,

Y that satisfies the displacement equations

VerpoA =XYT, or AgrpeA =XYT, X e RV Y e RV
The inverses and Schur complements of structured matrices can be obtained by operating on
their generators. Doing so requires O (umn) computations, where « is the displacement rank
of A, whereas working with the matrix A itself requires O (mn?) or O (m*n) computations.

We described such algorithms for QR factorization, inversion, regularization, and solution
of least squares problems. The key to obtaining these results is a combination of (efficient)
algorithms for successive Schur-complementation applied to certain judiciously chosen "compo-
site” (block) matrices.

We shall briefly outline the resulting generalized Schur algorithms.
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Generalized Schur Algorithms.

To efficiently compute the Schur complement D — CA™'B of the matrix

A B
M=\cp

we first need to obtain a proper generator for M , i.e., a generator of the form,

[ 0—0] [+ 0 —0]
* % * ® K —— K

X = , Y= , 3
x % * *x % *

for the Toeplitz displacement (Chapter 2), and

[+ 0— 0] [0— 0 ]
*x % * * * B

X = , Y= , @
* %k * * ® X
L J L J

for the Hankel displacement (Chapter 4). A non-proper generator of A can be converted to a

proper one in several ways. One is by applying the following matrices,

- -

Si,j= ’ C2+3152=1 (5)

! 1]

which can be used to null out different entries by appropriate choices of {c, s,, s;}. Proper

generators (3) or (4) can be obtained by using the matrix (5), or its special cases: Givens rota-
tions, hyperbolic rotations and elementary matrices. By post-multiplying X and Y with a
sequence of appropriate matrices S; j, we can transform X and Y to proper form with O (cwm)

computations.

The next step is to modify one column of X and Y. Repeating the same step (i.c.,




—————-——
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transformation to proper form followed by a modifications of the column) r times, where r is
the size of the square block A in M produces the generator of the Schur complement

D -CA™IB.

Displacement Representation of Composite Matrices (Chapter 3).

The above algorithms can be applied to the block matrices

T I T'T I T, T,
A=lrol |1 o) [T o

to obtain generalized Gohberg-Semencul formulas or, equivalently, displacement represen:a-

T 17 y il o
' T 1) 1 0

tions, of the matrices,
™, @’ry?, 7iri'r,, ra@™rny'r’, a’ry'rt.
Fast Matrix Factorizations and Solutions of Linear Equations (Chapters 2 and 4).

Another use of the generalized Schur algorithm is to obtain fast solutions for various
equations of structured matrices such as Toeplitz and close-to-Toeplitz matrices, Hankel and

close-to-Hankel matrices, and Vandermonde matrices.

Divide-and-Conquer Implementations (Chapter 5).

It tums out that the generalized Schur algorithm can be easily implemented in divide-

and-conquer fashion.

2. Some Known and Unknown Numerical Properties of the fast Algorithms.

In this section, we shall present a rather casual description of the numerical properties of

the fast algorithms considered in this thesis.

2.1 Levinson Algorithm.

T

The Levinson algorithm was analyzed by Cybenko (6). Bunch {4] clarified Cybenko’s

~ work by introducing the concept of three different numerical stabilities.

_i e S R ]




T
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Stability: An algorithm for solving linear equations is stable for a class of matrices M if for

each A € M and for each b the computed solution & to Ax = b satisfies A% = b for some A

and b, where A is close to A and b is close to b.

Strong stability: An algorithm for solving linear equations is strongly stable for a class of
matrices M if for each A € M and for each b the computed solution & to AX = b satisfies

AR =0, where A € M and A and b are close to A and b, respectively.

Weak stability: An algorithm for solving linear equations is weakly stable for a class of
matrices M if for each well-conditioned A € M and for each b the computed solution R to

Ax = b is such that Ix—11/11x1] is small.

According to the above definitions, strong stability implies stability and stability implies weak
stability.

Sometimes it is hard to prove that an algorithm is stable. Bunch pointed out that
Cybenko only proved that the Levinson algorithm is weakly stable. To see this let us consider

Cybenko's result and the classical perturbation theorem (see e.g. [18]).

Cybenko’s result: The computed solution ® to Tx =b will always have a small residual,

r = T& — b for "well-conditioned" symmetric positive Toeplitz matrices.

Perturbation Theorem: If Ax=b and AX=Db, where A is nonsingular, and if

HA-A A=Y < 1, then A is nonsingular and

+
Tl lAAll | VAN * 1ol
1 S Y]

From Cybenko’s result and the above theorem, it is easy to see that the Levinson algorithm is

lxxll K(A) A=Al . lib-BII }

weakly stable, because
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Hgxll liell
PIREATE

If Cybenko had shown that r = TR — b is small for all symmetric positive Toeplitz matrices
(including ill-conditioned matrix) then he would have proven that the Levinson algorithm is
stable. It is unknown [4] whether the Levinson algorithm for symmetric positive-definite Toe-

plitz matrices is stable (in Bunch’s sense) or not.

2.2 Schur Algorithm.

Numerical properties of the (generalized) Schur algorithm are also not fully understood
yet. However, it would not be a wild conjecture that the Schur algorithm is also (at least)
weakly stable because the Schur algorithm and the Levinson algorithm are closely related (see
Chapter 2). To compare the Schur algorithm with the Cholesky algorithm, we generated the
ill-conditioned positive-definite Toeplitz matrix (See Appendix for how to generate ill-

conditioned positive-definite Toeplitz matrices),

[ 1 99 999602 98922 99847 ]
99 1 99  .999602 .98922
T =1.999602 .99 1 99 999602 |, «(T)=29x10.
98922 999602 .99 1 99
| 99847 98922 999602 .99 1

Let L, and L, denote the lower triangular factors of T computed with single precision arith-
metic by the Cholesky algorithm and the Schur algorithm, respectively. Our simulation results
show that

NT -LLTU,=75%x10% T -LLT1H,=89x107% (6)
Therefore, we cannot exclude the possibility that the Schur algorithm is even stable in Bunch’s
sense (see [10]) also). Moreover certain "thresholding strategy” in which "small” reflection
coefficients are set equal to zero can substantially improve the numerical behavior of the Schur

algorithm {3), [13].
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2.3 Troubles associated with large Reflection Coefficients.

Cybenko obtained posteriori bounds on the condition number of Toeplitz matrices in
terms of the reflection coefficients (6] (see [13] for a more recent result). For close-to-Toeplitz

matrices large reflection coefficients indicate a large condition number of the matrices.

It is well-known [2], [17] that hyperbolic rotations with large reflection coefficients give

numerically poor results. To see this consider a single 2 x 2 hyperbolic rotation;

, L, ch —sh
W, b1=la,blH, H=|_, | ™
where
a=[alv az - '.an]To b=[b], bz,",b,.]r, |a||> 'bll,
a, = [a]'v a2'o Tt an’]Tv b' = [o' bzlv Tty bn']r'

Let us slightly perturb the ‘data’ a and b by i, and y,, and find the size of n;, the result-
ing relative perturbation in the ‘results’:

(a’(14my), b'(1+n)] = [a(1+4y), b(1+ux)]-H.
Then clearly

chpy —shp, ] ©

M;a’, n;b’] = [a, b} l:—shuz chp,y

Therefore

]
2
lm,a", 101 < [2(ch? + sh?p2)% lia, b)lIp = 2”;1-[—:—%] llfa, blllg, (9
where i = max(ly,!, ly,), and k is the reflection coefficient, k = sh/ch = by/a;. From (9),

one can see that a hyperbolic rotation gives an inaccurate result if the reflection coefficient & of

H is close to %1, ie., a;’ is close to zero (which is not surprising because of the large

difference in the two ecigenvalues of H).

To see the numerical difficulty associated with large reflection coefficients, we generated

a positive-definite Toeplitz matrix with the following reflection coefficients (see Appendix),
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K = [0, 0.99999, -0.99999, 0.99999, -0.99999].
The resulting matrix has condition number T) = 6.6 X 10'7. When we applied the Schur
algorithm with double precision arithmetic to re-compute the reflection coefficients, we
obtained

K = [0, 0.99999, —0.99998999999710, 0.99998958118522, -0.94450034224923]
which was quite different from the "true" reflection coefficients. For some problems (e.g.,
orthogonal filter synthesis {16]), what we need is only the reflection coefficients rather than the

factorization.

2.4 lll-conditioned Matrices can have small Reflection Coefficients.

A ill-conditioned matrix does not always have large reflection coefficients. To see this let

us define the two matrices

1 05 02 1 00
T=/051 05|, S=|0 10]. (10)
02 05 1 10°01
One can check that
1 0.5 10°+0.2
A=sTsST=| 05 1 5x1040.5 | = LLT,
10°40.2 5x10°+0.5 10000040001
where
1 0 0
L= 05 Y075 o0
0.4 36
10402 == /22
v0.75 75

The condition numbers of T and A are

K(T)=47, «x(A)=15x10%,
The matrix A also has displacement rank 2 because S is lower triangular Toeplitz (see Chapter

3 or [12]). Furthermore, the matrices A and T have the same reflection coefficients,
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K =]0, 172, -1/15]. an
Let L, and L, denote the lower triangular factors of A computed with double-precision arith-
metic by the Schur algorithm and the Cholesky algorithm, respectively. Our simulation experi-
ment gives rather surprising result:

L ~L,11=22x10"", L -L 11=69x107, (12a)

HA = LLETN =22 x107%, 1A - L.ETN=1.1x 107, (12b)
As far as the bounds in (12a) are concerned the Schur algorithm performs far better than the

Cholesky algorithm (beware of the matrix products STST, however).

2.5 Generalized Schur Algorithm and Sweet's Algorithm.

Sweet’s algorithm [19] behaves quite differently from the Schur-type fast QR factoriza-
tion algorithms. Let @, and R, be the matrices computed by Sweet's algorithm, and let O,
and R, be the matrices computed by our algorithm. The simulation result by Luk and Qiao

[15] for the following matrix,

27 9 3 -23#

(|9 279 3 ,

=23+ 3 9 27
shows that

HQLR,~T lle/NiT g = 5.9x10°"7,  11QTQ ~1 /11 11p = 2,6x10717,
However for the same matrix, our algorithm gives a poor result:

HQ,R,~T /T = 3x107%, 11QJQ, 1 g/l = 0.48.
The inaccurate Q, might be understood along the lines that (i) T7T is ill-conditioned, (ii) the

last reflection coefficient is very close to one and (iii) our fast QR factorization algorithm, in

fact, computes the partial triangularization (Chap 2) of

T 17
T I}
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Although Sweet's algorithm works well for the ill-conditioned matrix (13), Luk and Qiao

have shown that Sweet's algorithm did badly for the following well-conditioned matrix

((T) = 5.6),
8 42 1=
1 4 84 2 ;
T = —27 2 48 4 | t =107". (14)
1-t 2 4 3

The simulation result with our fast algorithm for the matrix T gives a very accurate result

probably because TTT does not have large reflection coefficients.

2.6 Numerically Stable Fast Algorithm for Indefinite Matrices.

For indefinite matrices, the leading principal submatrices can be (close-to) singular. It is
easy to find a well-conditioned indefinite matrix for which the Schur or Levinson algorithm
perform badly. There are some previous works [5] that might be useful for finding a numeri-

cally stable generalized Schur algorithm.
3. Other Open Research Problems

3.1 Indefinite Structured Matrices.

There are no doubt other special algorithms that can be put into array form in the way we
have described. In particular, we might mention algorithms for determining the root distribu-
tion of polynomials by studying the inertia of certain related matrices called Bezoutians (see
e.g. [14]). One feature of such matrices is that they may not be strongly regular (strongly non-
singular) in the sense that not all leading minors may be nonzero. This has been an often tacit
assumption in most of this thesis. Solution methods are known for some of these problems,
especially in the Hankel case, and it would be interesting to examine them from our point of

view.
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3.2 Array form of the RLS Algorithms.

Another area of exploration would be to see how to obtain array forms for the various

fast lattice and transversal filter RLS algorithms.

3.3 Accelerating the convergence of the Schur Algorithm.

The Schur algorithm is also widely used for the spectral factorization (see e.g. [9]). For
such applications, it would be useful to find a way to accelerate the convergence of the algo-

rithm.

3.4 Doubly Structured Matrices.

In many signal processing applications, we encounter so-called "doubly structured”
matrices (e.g. block-Toeplitz matrix with Toeplitz blocks). All known fast algorithms do not

fully utilize this additional structure.

3.5 Low displacement rank Decompositions.

Let A and B have displacement ranks a, and o, respectively. By considering the matrix

o

one can check that the matrix AB has displacement rank less than or equal to oy + @ + 1.
For a given matrix M with displacement rank ¢, is it possible to find matrices M; and M,,

whose displacement ranks are close to a/2, such that M = M ;M ,?

APPENDIX

Given a sequence of reflection coefficients

K = [kok['kzo A k.]o ko.oo
we can generate (7], [11] a symmetric positive-definite Toeplitz matrix using the transmission

line shown in Fig 1. We excite the quiescent transmission line (i.e. zero initial condition) with




-t
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the impulse sequence

(1,0,0,--1.
Then the output sequence (see Fig 1),

[Coi C CZ-"']v COEI

gives the desired Toeplitz matrix

T = (c;-j)
Because only orthogonal rotations are used, this procedure is numerically stable no matter how

large the reflection coefficients are.

0001 V1,2
+ + +
ky k1
1-k?
D+ D =+
C3C2

Fig . Generating Toeplitz Matrix given Reflection Coefficients.
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